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0 Basic Definitions and Lemmas
Definition 0.1. A CW-complex is a space constructed by successively attaching cells:
For n ∈ N, n ≥ 0, there are maps {φi : Sn−1 → Xn−1}i∈In (called characteristic maps). The way
to construct Xn (called n-skeleton of X) is :
(starting from X−1 = ∅, if we start from X−1 = A, we say (X,A) is a relative CW-complex)

∐
i∈In S

n−1 Xn−1

∐
i∈In D

n Xn

∐
i∈In

φi

⌟

(pushout)

and the resulting CW-complex X is lim−→{X
0 → · · · → Xn → Xn+1 → · · · }. The images of

◦
Dn
i in

X is called open cell eni of X.

Definition 0.2. A is a subcomplex of CW-complex X iff for any open cell eni of X, A satisfy:
A ∩ eni ̸= ∅ =⇒ ēni ⊆ A.
Pair of X and subcomplex A : (X,A) is called a CW-pair.

Definition 0.3. The Infinite Symmetric Product of a pointed space (X,x0) is colimit of its n-th
Symmetric Products ( SPnX := (

∏
{0,1,...,n−1}X)/Sn ) :

lim−→{· · · ↪→ SPnX ↪→ SPn+1X ↪→ · · · }
{x1, . . . , xn} 7→ {x0, x1, . . . , xn}

Definition 0.4. For n ≥ 1, a map between pairs f : (X,A)→ (Y,B) is an n-equivalence if:
• f−1

∗ (Im(π0B → π0Y )) = Im(π0A→ π0X)
• For all choices of basepoint a in A,

f∗ : πq(X,A, a)→ πq(Y,B, f(a))

is isomorphism for 1 ≤ q ≤ n− 1 and epimorphism for q = n.

Definition 0.5. A pair (X,A) of topological spaces is n-connected if π0(A)→ π0(X) is surjection
and πq(X,A) = 0 for 1 ≤ q ≤ n.

Definition 0.6. For topological spaces A ↪→ X, A is a strong deformation retract of a neigh-
borhood V in X if:
∃h : V × I → X such that
∀x ∈ V, h(x, 0) = x
h(V, 1) ⊆ A
∀(a, t) ∈ A× I, h(a, t) = a

Definition 0.7. For topological spaces i : A ↪→ X, A is a deformation retract of X if:
∃h : X × I → X such that
∀x ∈ X, h(x, 0) = x
h(X, 1) = A
∀(a, t) ∈ A× I, h(a, t) = a
(That is, there are retraction r : X → A and homotopy h : idX ≃ i ◦ r relA)
And r := h(−, 1) is called a deformation retraction.

Definition 0.8. For topological spaces A ↪→ X, a neighborhood V of A is deformable to A if:
∃h : X × I → X such that
∀x ∈ X, h(x, 0) = x
h(A× I) ⊆ A, h(V × I) ⊆ V .
h(V, 1) ⊆ A
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Definition 0.9. For a topological group G, a relative G-(equivariant) CW-complex (X,A)
is a space constructed by successively attaching G-equivariant cells G/H ×Dn on a G-space A:
For n ∈ N, n ≥ 0, there are maps {φi : G/Hi × Sn−1 → Xn−1}i∈In (called characteristic maps)
where each Hi is closed subgroup of G and G acts trivially on Dn, Sn−1. The way to construct
Xn (called n-skeleton of X) is:
(starting from X−1 = A where A is an G-space)

∐
i∈In(G/Hi × Sn−1) Xn−1

∐
i∈In(G/Hi ×Dn) Xn

∐
i∈In

ϕi

∐
i∈In

φi

⌟

(pushout in category of G-spaces)

The resulting X is lim−→{X
−1 → X0 → · · · → Xn → Xn+1 → · · · }. The images of G/Hi×

◦
Dn
i in X

is called open n-cell of type G/Hi. ϕi is called the attaching map and φi(G/Hi × Sn−1) is called
the boundary of ϕi(G/Hi ×Dn). If A = ∅, then X is called a G-(equivariant) CW-complex.

A criterion of weak homotopy equivalence:

Lemma 0.1. The following on a map e : Y → Z and any fixed n ∈ N are equivalent:

1. For any y ∈ Y , e∗ : πq(Y, y)→ πq(Z, e(y)) is monomorphism for q = n and is epimorphism
for q = n+ 1.

2. (HELP of (Dn+1, Sn)) Given maps f : Dn+1 → Z, g : Sn → Y and homotopy h : f ◦i ≃ e◦g:

Sn Dn+1

Y Z

g

e

i

fh

then we have extension g+ : Dn+1 → Y of g and h+ : f ≃ e ◦ g+:

Sn Dn+1

Y Z

g f

e

g+

h+

3. Conclusion above holds when the given h is idf◦i.

Proof. Trivially 2. implies 3.

Our first goal : 3. implies 1.

Fix n ∈ N. πn(e) is monomorphism:
For n = 0, 3. says if we have path e(y) ≃ e(y′) then we have path y ≃ y′.That is to say e can not
map two path-connected component to one.
For n > 0, 3. says if e ◦ g is nullhomotopic, then g : Sn → Y could be extend to g+ : Dn+1 → Y ,
which can be used to construct nullhomotopy of g.

Fix n ∈ N. πn+1(e) is epimorphism:
For [f ] ∈ πn+1(Z, e(y)) ∼= [Dn+1, Sn;Z, e(y)], let g := s 7→ y, the extension g+ satisfy e∗([g

+]) =
[f ], that proves e∗ is epimorphism.

Second goal : 1. implies 2.
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Fix g, f, h in the condition of 2. first. And observe that πn(Y, y) = [Sn, ∗;Y, y], πn+1(Y, y) =
[Dn+1, Sn;Y, y].
There is a map f ′ : (Dn+1, Sn)→ Z homotopic to f defined by f ′ = f ◦ b(−, 1) where

b : CSn × I → CSn

((x, t), s) 7→

{
(x, 1− 2t) t ≤ s

2

(x, t−s/21−s/2 ) t ≥ s
2

(recall that Dn+1 ≃ CSn) Therefore we can replace f with f ′. Using the epimorphism leads to
h′ : e ◦ g+′ ≃ f ′, using the monomorphism leads to r : g+

′ ◦ i ≃ g. Construct g+ := a(−, 1) using

a : CSn × I → Z

((x, t), s) 7→

{
r(x, s− 2t) t ≤ s

2

g+
′
(x, t−s/21−s/2 ) t ≥ s

2

And that is the end of the proof:

Sn Dn+1

Y Z

ff ′
b

h′

1 Right Notion For Spaces
Theorem 1.1. Homotopy Extension and Lifting property:
A : a topological space
X : result of successively attaching cells on A of dimensions 0, 1, . . . , k (k ≤ n)
e : Y → Z : n-equivalence
g : A→ Y , f : X → Z
h : f |A ≃ e ◦ g

A X

Y Z

g f

e

h

Then there exists g+ : X → Y extends g (g+|A = g)
and h+ : X × I → Z extends h, h+ : f ≃ e ◦ g+

A X

Y Z

g f

e

g+

h+

Proof. It suffices to prove the case A = Sk−1, X = Dk , e is inclusion. (replace Z by Me) Apply
HEP of (Dk, Sk−1):

4



Sk−1 Dk

Sk−1 × I Dk × I

Z
h

f

ĥ

f ′ := ĥ(−, 1), replace f with f ′ the diagram would be strictly commute. Therefore, f ′ is map of
pairs (Dk, Sk−1) → (Z, Y ), k ≤ n implies f ′ is nullhomotopic, suppose h+ : Dk × I → Z is the
nullhomotopy, then g+ := h+(−, 1) satisfy g+(Dk) ⊆ Y .

Note. In HELP, at condition Y = Z and e = id, HELP says (X,A) have HEP

Corollary 1.2. If
A : a topological space
X : result of successively attaching cells on A of any dimensions
Then, (X,A) have HEP.

Theorem 1.3. If X is an CW-complex, e : Y → Z is an n-equivalence, Then e∗ : [X,Y ]→ [X,Z]
is a bijection if dimX < n, and a surjection if dimX = n.(Also valid for pointed case)

Proof. Surjectivity:
Apply HELP of (X, ∅) ((X,x0) for pointed case) to obtain e∗[g

+] ≃ [f ]:

∅ X

Y Z

f

e

g+

Injectivity (dimX < n):
Suppose [g0], [g1] ∈ [X,Y ], e∗[g0] = e∗[g1].
Let f : e ◦ g0 ≃ e ◦ g1 Apply HELP to (X × I,X × ∂I):

X × ∂I X × I

Y Z

fg

e

g+

Corollary 1.4. If X is a CW-complex, e : Y → Z is weak homotopy equivalence, then e∗ :
[X,Y ]→ [X,Z] is bijection.

1.1 CW-approximation

This subsection shows that CW-complexes encode all weak-homotopy types of TOP.

Definition 1.1. A CW-approximation of (X,A) ∈ Top(2) is a CW-pair (X̃, Ã) and a weak

homotopy equivalence of pairs φ : (X̃, Ã)→ (X,A).

Theorem 1.5. (Existence of CW-approximation) If X is path-connected pointed space (0-connected),

then there is a CW-approximation (X̃, ∗) ϕ−→ (X, ∗). If X is n-connected then X̃ could be chosen

to satisfy X̃n = ∗. (Moreover, each characteristic map of X is pointed)
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Proof. If X is n-connected, then ϕn : Y n := ∗ → X is n-equivariance. Assmue inductively that we

already have m-equivalence Y m
ϕm−−→ X (m ≥ n), Our goal is construct Y m+1 and ϕm+1 : Y m+1 →

X.
Let

f+m :
⊕
a∈A

Za ↠ ker(ϕm∗) ⊆ πm(Y m)

be a free resolution of ker(ϕm∗) (
∐
a∈A Za if m = 1), and obtain a (unique up to homotopy) map

fm :
∨
a∈A S

m
a → Y m defined by fm|Sm

a
:= ka where [ka] = f+m(1a) ∈ [Sm, Y m]∗. We have: (since

[ϕm ◦ fm] = 0) ∨
a∈A S

m
a Y m Cfm

X

fm

ϕm

φm+1

Cfm is a CW-complex with dim = n + 1 with m-skeleton Y m. φm+1∗ : πm(Cfm) → πm(X) is
isomorphism, but φm+1∗ : πm+1(Cfm)→ πm+1(X) is not necessarily an epimorphism.
Define the set B := πm+1(X)− φm+1∗(πm+1(Cfm)) and Y m+1 := Cfm ∨ (

∨
b∈B S

m+1
b ).

Define ϕm+1 by ϕm+1|Cfm
:= φm+1 and ϕm+1|Sm+1

b
:= rb where [rb] = b ∈ [Sm+1, X]∗.

X̃ := lim−→m
{Y 0 ↪→ · · · ↪→ Y m ↪→ Y m+1 ↪→ · · · }, and ϕ = lim−→m

ϕm
If X is not path-connected, construct CW-approximation for each path-connected component.

Note. The proof of existence of CW-approximation uses homotopy excision theorem (CW-triad
version). Proof of CW-traid version does not need CW-approximation. There is no circular
argument.

Proposition 1.6. For any pair (X,A), there exists CW-approximation ϕ : (X̃, Ã)→ (X,A).

Proof. Construct ϕA : Ã → A first and use analogue method in proof of theorem 1.5 with
Y 0 := Ã.

Lemma 1.7. φ,ψ are CW-approximations of X,Y , f : X → Y , then

X̃ X

Ỹ Y

∃f̃

φ

f

ψ

commutes up to homotopy, and f̃ is unique up to homotopy.

Proof. Directly from ψ∗ : [X̃, Ỹ ]→ [X̃, Y ] is bijection.

Theorem 1.8. φ,ψ are CW-approximations of (X,A), (Y,B), f : (X,A)→ (Y,B), then

(X̃, Ã) (X,A)

(Ỹ , B̃) (Y,B)

∃f̃

φ

f

ψ

commutes up to homotopy, and f̃ is unique up to homotopy.
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Proof. Apply Lemma 1.7 to obtain map f̃A : Ã → B̃ and homotopy h : ψ|B̃ ◦ f̃A ≃ f ◦ φ|Ã Use

HELP of (X̃, Ã) to extend it:

Ã X̃

B̃ X

Ỹ Y

f̃A

f̃

ψ∗ is bijection implies the uniqueness up to homotopy of f̃ .

Theorem 1.9. (Whitehead’s Theorem)
Every n-equivalence between CW-complexes whose dimension is lower than n, is homotopy equiv-
alence. Every weak homotopy equivalence between CW-complexes is homotopy equivalence.

Proof. e : Y → Z induce bijections [Y, Y ] → [Y, Z] and [Z, Y ] → [Z,Z], [f ] = e−1
∗ [idZ ] implies

[e ◦ f ] = [idZ ] and [e ◦ f ◦ e] = [e] ([f ◦ e] = e−1
∗ [e] = [idY ]).

Corollary 1.10. CW-approximation is unique up to homotopy.

Example 1.1. Polish circle (Warsaw circle) : closed topologist’s sine curve. It is n-connected
forall n but not contractible.

Definition 1.2. A cellular map between CW-pairs is g : (X,A)→ (Y,B) such that g(A ∪Xn) ⊆
B ∪ Y n.

Theorem 1.11. For any map between CW-pairs f : (X,A) → (Y,B) there exists a cellular map
g such that g ≃ f relA

Proof. Construct g inductively:
Start from A ∪X0:
take paths γi : f(xi) ≃ yi, where yi is any point in Y 0 and xi ∈ X0 −A.
Construct h0 : (X0 ∪A)× I → Y : h0|A(a, t) := f(a), h0|X0−A(xi, t) := γi(t). This is a homotopy
from f to g0 := h0(−, 1) : A ∪X0 → B ∪ Y 0

Inductive step:
Assume gn : A ∪Xn → B ∪ Y n and homotopy hn : f |A∪Xn ≃ gn is given, try to construct gn+1:
For each characteristic map φi : S

n → Xn, take the resulting cell map φ+
i : Dn+1 → Xn+1 and

use HELP of (Dn+1, Sn):

Sn Dn+1

Xn Xn+1

B ∪ Y n+1 Y

φi

gn

φ+
i

f

gn+1,i

hn+1,i

Glue all gn+1,i and hn+1,i to produce gn+1 and hn+1 : f |A∪Xn+1 ≃ gn+1.
Final stage:
Maps gn determine a cellular map g : X → Y since X has the final topology determined by
skeletons.

Corollary 1.12. If X is a pointed CW-complex, then the inclusions Xn+1 ↪→ Xn+2 ↪→ · · · ↪→ X
induce πn(X

n+1) ∼= πn(X
n+2) ∼= · · · ∼= πn(X).
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Proof. For k ≥ 1, Xn+k ↪→ Xn+k+1 induces epimorphism πn(X
n+k) ↠ πn(X

n+k+1)
since every f : (Sn, ∗)→ (Xn+k+1, ∗) is homotopic ( rel ∗) to an g : (Sn, ∗)→ (Xn, ∗) ↪→ (Xn+k, ∗).
Now we want to prove it is monomorphism, that is, i∗[f ] = 0 =⇒ [f ] = 0
If h : (Sn, ∗)× I → Xn+k+1 is a nullhomotopy in Xn+k+1

of a map f : (Sn, ∗)→ (Xn+k, ∗) ↪→ (Xn+k+1, ∗),
then h : (CSn, Sn)→ (Xn+k+1, Xn+k) is homotopic ( relSn) to an h′ : (CSn, Sn)→ (Xn+k, Xn+k),
which is equivalent to h′ : Sn × I → Xn+k with h(Sn, 1) = ∗, h(∗, t) = ∗, h|Sn×{0} = f .

Lemma 1.13. If (X,A) is CW-pair and all cells of X − A have dim > n, then (X,A) is n-
connected.

Proof. For each q ≤ n, and each [f ] ∈ πq(X,A), f ≃ g relSq−1 where g is an cellular map. (use
theorem 1.11) πq(X,A) ∋ [g] = 0 since g(Sn−1 ∪ en) = g(Dn) ⊆ A ∪Xn = A.

1.2 Operation of CW-complexes

We show that Product, Smash Product of CW-complexes and Quotient of CW-pairs (with
compact-open topology) are CW-complexes. (Compact-open topology is the right topology on
CW-complexes)

Product of CW-complexes:

Example 1.2. Product topology of two CW-complexes does not coincide with the final topology
(union topology):
X (star of countably many edges) : X = X1 =

∨
n∈ω In

Y (star of ωω many edges) : Y = Y 1 =
∨
f∈ωω If ( (In, 0) ∼= (If , 0) ∼= (I, 0) )

Consider subset H of X × Y : H := {( 1
f(n)+1 ,

1
f(n)+1 ) ∈ In × If | n ∈ ω, f ∈ ω

ω}.
H is closed under the final topology since every cell of X × Y contains at most one point of H.
But closure of H contains (0, 0) at product topology:
Let U × V be an open neighborhood (at product topology) of (0, 0), let g : ω → ω − 0 be an
increasing function such that forall n ∈ ω, [0, 1

g(n) ) ⊆ U ∩ In, let k ∈ omega be sufficiently large

that 1
g(k)+1 ⊆ V ∩ Ig, then ( 1

g(k)+1 ,
1

g(k)+1 ) ∈ U × V ∩H.

Proposition 1.14. X and Y are CW-complexes, X × Y is CW-complex if
X or Y is locally compact
or
both X and Y have countably many cells.

Another way to realize X × Y as CW-complex is to change its topology to the compactly
generated topology k(X × Y ):

Definition 1.3. For subspace A of X, A is compactly closed if

∀ compact space K

∀ continuous g : K → X

g−1(A) is closed in K

Definition 1.4. X is k-space if any compactly closed subset is closed.

Definition 1.5. X is weak Hausdorff if

∀ compact space K

∀ continuous g : K → X

g(K) is closed in K

Definition 1.6. The k-ification of a space X is defined by: k(X) := (X, τ)
where τ = {X −A | A is compactly closed set}
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Definition 1.7. X is compactly generated space if it is k-space and weak Hausdorff.

Note. If X is weak Hausdorff, then A ⊆ X is compactly closed iff

∀ compact subspace K ⊆ X
A ∩K is closed in X

If X is a CW-complex, then the topology defined on k(X) automatically coincide with the final
topology induced by its CW-complex structure. We have CW-complex structure of k(X × Y ) is
given by:

∂In × Im ∪ In × ∂Im Xn−1 × Y m ∪Xn × Y m−1

In × Im Xn × Y m

Furthermore, the k-ification is right adjoint of the inclusion functor i:

TOPCptGen TOPweakHaus

i

k(−)

⊣
This allows us to define the CW-complex structure on any limit of CW-complexes: lim←−iXi ≈
lim←−i k(Xi) ≈ k(lim←−iXi) (X ≈ k(X) and right adjoint preserve limits).

Note. Category of CW-complexes is not cartesian closed, but category of compactly generated

spaces TOPCG is. And its pointed version TOP
∗/
CG have based exponential law: Hom(X∧Y,Z) ≈

Hom(X,Hom(Y,Z)).

Quotient of CW-pair:

Proposition 1.15. For CW-complex X and subcomplex A, the Quotient space X/A have a CW-
complex structure induced by X and A.

Proof. Suppose the characteristic maps of X are indexed by {In}n∈N and of A are indexed by
{I ′n}n∈N (I ′n ⊆ In). Then the characteristic maps of X/A are indexed by {Kn}n∈N, which defined
below:
K0 := (I0 − I ′0) ∪ {i0} where i0 is an arbitrary element in I ′0
Kn := In − I ′n for n > 0.
Verify the maps determine the CW-complex structure:

Sn−1 Xn−1 Xn−1/An−1

Dn Xn Xn/An−1 An

Xn/An ∗

Z

⌟

⌟⌟

Smash product of CW-complexes:

Proposition 1.16. If (X,x0) , (Y, y0) are pointed CW-complexes with both countably many cell,
and Xr−1 = {x0}, Y s−1 = {y0}, then X ∧ Y := X × Y/X ∨ Y is an (r + s − 1)-connected
CW-complex.

Proof. X × Y is CW-complex with cells of the form eni,X × {y0}, {x0} × emj,Y or eni,X × emj,Y for

n ≥ r, m ≥ s. Cells of the first two forms are contianed in X ∨Y , therefore (X ∧Y )r+s−1 = ∗.
Corollary 1.17. If X is a pointed CW-complex, then ΣnX is an (n− 1)-connected CW-complex.
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1.3 Properties of Infinite Symmetric Product

Functoriality:

Pointed map f : X → Y induces

fn : SPnX → SPn Y

{x1, . . . , xn} 7→ {f(x1), . . . , f(xn)}

SPnX SPn+1X

SPn Y SPn+1 Y

fn fn+1

Which induces map SP f : SPX → SPY . And Functorial properties are directly from the
constructions above.

SP(X1 ∨X2) ≈ SP(X1)× SP(X2), the homeomorphism is given by:

SP(X1)× SP(X2) ⇆ SP(X1 ∨X2)

({a1, a2, · · · , ak}, {b1, b2, · · · , bm}) 7→ {a1, a2, · · · , ak, b1, b2, · · · , bm}

Commute with directed colimit:
Suppose P is a directed poset (that is ∀x, y ∈ P, ∃z ∈ P, x ≤ z, y ≤ z) and Xi are pointed spaces
indexed by P satisfying i ≤ j =⇒ Xi ⊆ Xj .
Then SPn(lim−→i

Xi) ≈ lim−→i
(SPnXi)

(Proof is obtained by showing that SPn f is continuous iff f is, which implies final topology on
lim−→i

(SPnXi) agree on SPn(lim−→i
Xi))

Suppose i : A ↪→ X is an pointed inclusion, then SP i : SPA ↪→ SPX is also inclusion. Fur-
thermore, if A is open (or closed) in X, then SPA is open (or closed) in SPX.

CW-complex structure of SP:

We can have natural CW-complex structure on
∏
nX by applying k(−). following theorems

allows us to prove that SPnX =
∏
nX/Sn have a CW-complex structure.

Definition 1.8. G acts cellularly on a CW-complex X if:

∀g ∈ G, eni is open n-cell (of X)

g(eni ) = enj is open n-cell (of X)

and g(eni ) = eni implies g|eni = ideni .

Lemma 1.18. If G is a discrete group, X is CW-complex with G cellularly act on X. Then X is
a G-CW-complex with n-skeleton Xn.

Proof. The goal is to show Xn is obtained from Xn−1 by attaching G-equivariant cells. Since∐
i∈In Y = In × Y (In with discrete topology). We have:

In × Sn−1 Xn−1

In ×Dn Xn

φ

ϕ

⌟

G acts cellularly on open n-cells implies G acts on In. Decomposite In into disjoint unions of obrits∐
α∈A Iα choose G-isomorphisms

G/Hα
∼= Iα

gHα 7→ giα
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And we have a well-defined G-map.

ϕα|en : G/Hα × en ∼= Iα × en → Xn

(gHα, x) 7→ (giα, x) 7→ ϕgiα(x) = gϕiα(x)

Since we have en =
◦
Dn, we obtain the following (by continuity):

ϕα : G/Hα ×Dn → Xn

(gHα, x) 7→ gϕiα(x)

ϕα|Sn−1 = φα : G/Hα × Sn−1 → Xn−1

(gHα, s) 7→ gφiα(s)

Let φ′ :=
∐
α∈A φα and ϕ′ :=

∐
α∈A ϕα we have:

∐
α∈A(G/Hα × Sn−1) Xn−1

∐
α∈A(G/Hα ×Dn) Xn

Z

φ′

ϕ′

∐
fα

f

∃!f+

Verify it is indeed a pushout of G-spaces: f+ (is already determined uniquely as map between
G-sets) is map between G-spaces.
Since X have compactly generated topology, f+ is continuous on each compact subspace of X
implies f+ is continuous on each compactly closed subspace of Xn, which implies f+ is continuous
on total Xn.
f+ is continuous on each closed n-cell {gHα} ×Dn and f+ is continuous on Xn−1 implies f+ is
continuous on each compact subspace. (since each compact subspace intersect finitely with n-cells
and Xn−1 (We use Xn is T2 to construct open cover))

Theorem 1.19. For any topological group morphism ϕ : H → G we have induced functors:
pullback action:

G−TOP
ϕ∗

−→ H−TOP

(α(−,−) : G×X → X) 7−→ (α(ϕ(−),−) : H ×X → X)

(f : X → Y ) 7−→ (f : X → Y )

induced action:

H−TOP
G×H−−−−−→ G−TOP

X 7−→ G×H X := (G×X)/[ (gϕ(h), x) ∼ (g, hx) | h ∈ H]

(f : X → Y ) 7−→ (idG ×H f : G×H X → G×H Y )

Which are adjunctions:

H−TOP G−TOP

G×H−

ϕ∗

⊣

Proof. By G-equivariance, f is determined uniquely by its restriction f |ϕ(H)×HX . And f̃ : X →
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ϕ∗(Y ) uniquely determine a map ϕ(H)×H X → Y .

(G×H X Y ) (X = ϕ(H)×H X Y )

(gϕ(h), x) gϕ(h)f(x) (ϕ(h), x) = (e, hx) ϕ(h)x

X ϕ∗(Y )

f f |H×HX

∈ ∈ ∈ ∈

f̃

Naturality:

(G×H X ′ G×H X Y Y ′)

(g, hx′) (g, hf ′(x)) gϕ(h)f(f ′(x)) gϕ(h)f ′′(f(f ′(x)))

⇆

(X ′ X = ϕ(H)×H X ϕ∗(Y ) ϕ∗(Y ′))

(hx′) (ϕ(h), f ′(x′)) = (e, hf ′(x′)) ϕ(h)f(f ′(x)) ϕ(h)f ′′(f(f ′(x)))

f

f |H×HX

∈ ∈

∈ ∈

idG×Hf
′

∈

f ′′

∈

f ′

∈

ϕ∗(f ′′)

∈
Proposition 1.20. If (X,A) is relative G-equivariant CW-complex, then (X/G,A/G) is relative
CW-complex with n-skeleton Xn/G.

Proof. ∐
i∈In S

n−1 Xn−1/G

∐
i∈In D

n Xn/G

Is still pushout since −/G = 1×G −, and left adjoint preserves colimits.

Since k(
∏
nX) have CW-complex structure, and Sn (as a discrete group) acts cellularly on

it, k(
∏
nX) is an Sn-equivariant CW-complex. Therefore SPnX = k(

∏
nX)/Sn is CW-complex.

Since SPX = lim−→{SP
1X ↪→ · · · ↪→ SPnX ↪→ SPn+1X ↪→ · · · }, SPX is also a CW-complex.

Pointed homotopy h : X × I → Y induces

hn : SPnX × I → SPn Y

({x1, . . . , xn}, t) 7→ {h(x1, t), . . . , h(xn, t)}

12



which induces SPh : SPX × I → SPY .

Then we observe:
f ≃ g implies SP f ≃ SP g,
e : X → Y is homotopy equivalence implies SP e : SPX → SPY is,
X is contractible implies SPnX and then SPX is.

Theorem 1.21. (Dold-Thom Theorem)
If X is T2 space and A is closed path-connected subspace of X, and there is neighborhood V
deformable to A in X.
Then the quotient map q : X → X/A induces quasi-fibration SP q : SPX → SP(X/A), which
satisfy ∀x ∈ SP(X/A), (SP q)-1{x} ≃ SPA.

Proof. See here.

Corollary 1.22. If X , Y are T2 spaces and Y is connected, f : X → Y . Then consider
X → Y → Cf → ΣX, the map p : Cf → ΣX induces quasi-fibration SP p : SPCf → SP(ΣX) with
fiber SPY .

Corollary 1.23. If X is T2 and path-connected, then for any q ≥ 0, there is πq+1(SP(ΣX)) ∼=
πq(SPX).

Proof. CX is contractible implies SPCX is contractible, use the exat homotopy sequence of
quasi-fibration to see:

πq+1(SPCX) πq+1(SPΣX) πq(SPX) πq(SPCX)
∂

∼=

Note. The inverse of the isomorphism ∂ above is given by

[Sq,SPX] ∋ [g] 7→ [Σg] ∈ [Sq+1,ΣSPX]

(Σ SPX ∼= SPΣX). Because ∂ is given by:

πq(SPΣX) πq(SPCX, SPX) πq−1(SPX)

[f ] [f̂ ] [f̂ |Sq−1 ]

[p ◦ Cg] = [Σg] [Cg] [g]

∋ ∋ ∋

.

Corollary 1.24. If X is T2 space and A is path-connected subspace of X, then the canonical map
SP(X ∪ (A× I))→ SP(X ∪ CA) is a quasi-fibration with fiber SPA.

Theorem 1.25. If X is T2 space and A is path-connected subspace of X, and A ↪→ X is a
cofibration.
Then the quotient map q : X → X/A induces quasi-fibration SP q : SPX → SP(X/A), which
satisfy ∀x ∈ SP(X/A), (SP q)-1{x} ≃ SPA.

Proof. If A ↪→ X is cofibration, then X ∪ CA ≃ X/A and X ∪ (A× I) ≃ X.

Proposition 1.26. The inclusion S1 → SPS1 is homotopy equivalence, therefore πq(S
1) ∼=

πq(SPS
1).

13



Proof. S1 ≃ S2 − {0,∞}
SPn S2 = {{a1, . . . , an} | ai ∈ C∪{∞}} = {

∏
{a1,...,an}(z−ai) | ai ∈ C∪{∞}} where (z−∞) := 1

SPn S2 = {f ∈ C[z]− {0} | deg(f) ≤ n} = CPn

SPn(S2−{0,∞}) = {f ∈ C[z]−{0} | deg(f) ≤ n, fn ̸= 0, f0 ̸= 0} = Cn−Cn−1×0 = Cn−1×(C−0)
it have the same homotopy type of S1

Corollary 1.27. πq(SPS
n) = Z if q = n, otherwise πq(SPS

n) = 0. (use corollary of 1.21 to see
πq+1(SPΣX) ∼= πq(SPX))

2 Homology Groups
2.1 Reduced Homology Groups

Definition 2.1. For a path-connected pointed CW-complex X, define its n-th reduced homol-
ogy group for n ≥ 0:

H̃n(X) := πn(SPX)

Note. All reduced homology groups are abelian since H̃n(X) ∼= H̃n+1(ΣX). Thus, we can extend
the definition above to those X which does not necessarily be path-connected.

As SP, H̃n also satisfy functoriality. Furthermore, H̃n maps homotopic maps f ≃ g to identical
maps f∗ = g∗. (SP maps homotopic maps to homotopic maps)

Exact Property:

Proposition 2.1. For any pointed map between CW-complexes f : X → Y , we have an exact
sequence:

H̃n(X)
f∗−→ H̃n(Y )

i∗−→ H̃n(Cf )

where Cf is the mapping cone of f , i : Y ↪→ Cf .

Proof. Zf := Y ∪f (X × I)/{x0} × I is the reduced mapping cylinder of f .
q : Zf → Cf is defined by

y 7→ y

(x, t)
Zf 7→ (x, t)

Cf

By Dold-Thom theorem, the induced map SP q is quasi-fibration SPZf → SPCf with fiber SPX.
By definition of quasi-fibration, we have

πn(SPX) ∼= H̃n(X)
f∗−→ πn(SPZf ) ∼= H̃n(Y )

i∗−→ πn(SPCf ) = H̃n(Cf )

Proposition 2.2. There does not exist retraction r : Dn → Sn−1.

Proof. id = r ◦ i : Sn−1 → Dn → Sn−1 induces

id∗ = r∗ ◦ i∗ : Z ∼= H̃n−1Sn−1 → H̃n−1Dn ∼= 0→ H̃n−1Sn−1 ∼= Z

which lead to contradiction.

Theorem 2.3. Fix-point theorem:
If f : Dn → Dn is continuous, then exist x0 ∈ Dn such that x0 = f(x0).

Proof. (non-constructive) No such x0 implies ∀x ∈ Dn, f(x) ̸= x therefore, we can construct
continuous retraction r : Dn → Sn−1 by
r(x):= the intersection of “ray starting from f(x) to x” and Sn−1. Contradict to 2.2.
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Definition 2.2. Let (X,A) be an CW-pair, define the n-th homology group for n ∈ N of (X,A)
be:

Hn(X,A) := H̃n(X ∪ CA)

And for single space:

Hn(X) := Hn(X, ∅) = H̃(X + 1)

where X + 1 := X ⊔ ∗.

Note. Map between CW-pair f : (X,A)→ (Y,B), induces map f̄ : X ∪CA→ Y ∪CB defined by
(x, t) 7→ (f(x), t), which induces f∗ : H̃n(X ∪ CA)→ H̃n(Y ∪ CB) for any n ∈ N.

2.2 Axioms for Homology

Definition 2.3. A (Ordinary) Homology Theory (on TOP with coefficient G ∈ Ab) is functors
{Hn(−,−;G) : TOP(2)→ Ab}n∈Z,
with natural transformations ∂n,(X,A) : Hn(X,A;G)→ Hn−1(A, ∅;G) (called connecting homo-
morphism)
satisfying following axioms:

• Dimension:
H0(∗, ∅;G) = G, for any n ̸= 0, Hn(∗, ∅;G) = 0.

• Weak Equivalence:
Weak equivalence f : (X,A)→ (Y,B) induces isomorphism

f∗ : H∗(X,A;G)→ H∗(Y,B;G)

• Long Exact Sequence:
For any (X,A) ∈ TOP(2), maps A ↪→ X and (X, ∅)→ (X,A) induce a long exact sequence
together with ∂:

· · · → Hq+1(A;G)→ Hq+1(X;G)→ Hq+1(X,A;G)→ Hq(A;G)→ · · ·

where Hn(X;G) := Hn(X, ∅;G).

• Additivity:
If (X,A) =

∐
λ(Xλ, Aλ) in TOP(2), then inclusions iλ : (Xλ, Aλ)→ (X,A) induces isomor-

phism

(
⊕

i∗,λ) :
⊕
λ

H∗(Xλ, Aλ;G) ∼= H∗(X,A;G)

• Excision:

If (X;A,B) is an excisive triad (that is, X =
◦
A ∪

◦
B), then inclusion (A,A ∩B) ↪→ (X,B)

induces isomorphism
H∗(A,A ∩B;G) ∼= H∗(X,B;G)

Note. An equivalent form of Excision Axiom:

If (X,A) ∈ TOP(2), U is subspace of A and U ⊆
◦
A, then inclusion i : (X − U,A− U) ↪→ (X,A)

induces isomorphism
i∗ : H∗(X − U,A− U ;G)→ H∗(X,A;G)

There is a critical criterion about weak homotopy equivalence between excisive triads, we prove
lemmas first:
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Lemma 2.4. For

Z Y

X X ∪Z Y

i

f

i∗

f∗

⌟

if D is deformation retract of X and Z ⊆ D ⊆ X, then D ∪Z Y is deformation retract of X ∪Z Y .

Proof. Let h : idX ≃ r ◦ i where r is the deformation retraction X → D. Define h∗ : idX∪ZY ≃
(i ∪Z idY ) ◦ (r ∪Z idY )

h∗ : (X ∪Z Y )× I → X ∪Z Y
(x, t) 7→ f∗(h(x, t))

(y, t) 7→ i∗(y)

Observe that (X ∪Z Y )× I = (X × I) ∪Z×I (Y × I), check that h∗ is continuous:

Z × I Y × I

X × I (X ∪Z Y )× I Y

X X ∪Z Y

⌟

ididY

h
i∗

f∗

h∗

Lemma 2.5. For maps i : C → A, j : C → B define the double mapping cylinder M(i, j) :=
A ∪C×{0} C × I ∪C×{1} B. If i is closed cofibration, then the quotient map

q :M(i, j)→ A ∪C B
a 7→ a

b 7→ b

(c, t) 7→ c

is a homotopy equivalence.

Proof.
C B

A A ∪C B

i

iA

The canonical quotient r :MiA → A ∪C B is a deformation retraction with homotopy:

h : (B ∪C×0 (A× I))× I → B ∪C×0 (A× I) =MiA

(a, t, s) 7→ (a, (1− s)t)
(b, s) 7→ b

Observe that C × I ∪C A × {1} is a deformation retract of A × I, since i : C → A is closed
cofibration.
Then we haveM(i, j) = B∪C×{0}(C×I∪C×{1}A×{1}) is a deformation retract of B∪C×{0}A×I =
MiA . (use lemma 2.4)

Finally, an easy check shows that M(i, j)→MiA
r−→ A ∪C B is identical to q.
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Theorem 2.6. For excisive triads (X;X1, X2), (X
′;X ′

1, X
′
2) and map e : X → X ′, if

e|X1 : X1 → X ′
1

e|X2 : X2 → X ′
2

e|X3 : X3 → X ′
3

are weak equivalences, (where X3 := X1 ∩X2, X
′
3 := X ′

1 ∩X ′
2) then e is.

Proof. Use an important criterion of weak homotopy equivalence, it suffices to show forall n ∈ N,
any commutative diagram below:

Sn Dn+1

X X ′

i

g

e

f

can be filled like:

Sn Dn+1

X X ′

i

g

e

f
g+

h

whose upper triangle commutes.

Let

A1 := g−1(X −
◦
X1) ∪ f−1(X ′ −

◦
X ′

1)

A2 := g−1(X −
◦
X2) ∪ f−1(X ′ −

◦
X ′

2)

which are disjoint closed subsets of Dn+1. Choose CW-complex structure on Dn+1 such that for
each n-cell σi, σi ∩ (A1 ∪A2) = σi ∩A1 or σi ∩A2. Now define

K1 :=
⋃
{σi | g(σi ∩ Sn) ⊆

◦
X1 and f(σi) ⊆

◦
X ′

1} =
⋃
{σi | σi ∩A1 = ∅}

K2 :=
⋃
{σi | g(σi ∩ Sn) ⊆

◦
X2 and f(σi) ⊆

◦
X ′

2} =
⋃
{σi | σi ∩A2 = ∅}

which are subcomplexes of Dn+1 and satisfy K1 ∪K2 = Dn+1. By HELP, we have:

Sn ∩K1 ∩K2 K1 ∩K2

X1 ∩X2 X ′
1 ∩X ′

2

i

g|K1∩K2
f |K1∩K2

e|X1∩X2

g0

h0

such that h0 is f |K1∩K2
≃ e ◦ g0 rel (Sn ∩K1 ∩K2). Apply HELP to:

(Sn ∪K1) ∩K2 K2 (Sn ∪K2) ∩K1 K1

X2 X ′
2 X1 X ′

1

i2

f |K2
gK2

hK2

i1

gK1 f |K1
hK1

where
gKi

are defined by gKi
|Sn∩Ki

:= g|Sn∩Ki
and gKi

|K1∩K2
:= g0,

hK2 are defined by (hK1 is similar):

hK2
: ((Sn ∪K1) ∩K2)× I → X ′

2

(x, t) 7→

{
e(g(x)) x ∈ Sn ∩K2

h0(x, t) x ∈ K1 ∩K2
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We get:

(Sn ∪K1) ∩K2 K2 (Sn ∪K2) ∩K1 K1

X2 X ′
2 X1 X ′

1

gK2 f |K2

e|X2

g2 gK1

e|X1

g1

h2 h1

Define g+ and h : f ≃ g relSn by g+|Ki
:= gi and h|Ki×I := hi.

h|Sn×I = (e ◦ g)× idI (h is relSn) since hi(−, t)|Sn∩Ki
= hKi

(−, t)|Sn∩Ki
= e ◦ g|Sn∩Ki

.

Note. The proof above can be easily modified to case each weak equivalence appear in the state-
ment is an n-equivalence.

Following theorem allow us to use CW-triads to approximate excisive triads:

Theorem 2.7. For any excisive triad (X;A,B), there is a CW-triad (X̃; Ã, B̃) (A CW-triad

(X;A,B) is X and its subcomplex A,B such that A ∪B = X) and a map r : X̃ → X such that

r|Ã : Ã→ A

r|B̃ : B̃ → B

r|C̃ : C̃ → C

r : X̃ → X

are all weak homotopy equivalences (where C̃ := Ã ∩ B̃, C := A ∩ B). Furthermore, such r is
natural up to homotopy.

Proof. Choose a CW-approximation rC : C̃ → C and extend it to rA : Ã → A, rB : B̃ → B.
X̃ := Ã ∪C̃ B̃. i : C̃ → Ã and j : C̃ → B̃ are closed cofibrations, by lemma 2.5 we have homotopy

equivalence q :M(i, j)→ X̃, which induces homotopy equivalence of triads:

q :M(i, j)→ X̃

q| : Ã ∪ (C̃ × [0,
2

3
))→ Ã

q| : B̃ ∪ (C̃ × (
1

3
, 1])→ B̃

then we can deduce that r ◦ q is a weak homotopy equivalence by theorem 2.6. Consquently, r is
weak homotopy equivalence. r is natural up to homotopy since each CW-approximation rC , rA, rB
is.

Then we have:

Definition 2.4. A (Ordinary) Homology Theory on CW-complexes with coefficient G ∈ Ab is
functors {Hn(−,−;G) : CW-pairs→ Ab}n∈Z,
with natural transformations ∂n,(X,A) : Hn(X,A;G)→ Hn(A, ∅;G) (called connecting homomor-
phism)
satisfying axioms with the excision axiom changed to:

• Excision:
If (X;A,B) is an CW-triad (that is X = A∪B for subcomplexes A and B) then the inclusion
(A,A ∩B) ↪→ (X,B) induces isomorphism

H∗(A,A ∩B;G) ∼= H∗(X,B;G)
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Proposition 2.8. The homology groups defined in definition 2.2 with H−n(X) := 0 is a ordinary
homology theory on CW-complexes with coefficient Z.

Proof.

• Dimension: by a corollary, Hq(∗, ∅) = πq(SPS
0) =

{
Z q = 0

0 q ≥ 1
.

• Weak Equivalence: SP preserves weak equivalence.
• Long Exact Sequence: use a corollary of Dold-Thom theorem.
• Additivity: For index set Λ, P := {S | S ⊆ Λ}.
Then define YS :=

∨
λ∈S Xλ ∪ CAλ = (

∐
λ∈S Xλ) ∪ C(

∐
λ∈S Aλ),

and use fact that SP commutes with directed colimit, we have∨
λ∈Λ SP(Xλ∪CAλ) = lim−→S∈P SPYS ≈ SP(lim−→S∈P YS) = SP((

∐
λ∈ΛXλ) ∪ C(

∐
λ∈ΛAλ)) =

SP(X ∪ CA).
Which induces

⊕
λ∈Λ H̃n(Xλ ∪ CAλ) ∼= πn(

∨
λ∈Λ SP(Xλ ∪ CAλ)) ∼= πn(SP(X ∪ CA)) =

H̃n(X ∪ CA).
• Excision: For CW-triad (X;A,B), A/(A∩B) ≈ X/B. Apply theorem 1.25 to (Y ∪CZ,CZ)
to show that Hn(Y,Z) ∼= H̃n(Y/Z).

2.3 Cellular Homology

Lemma 2.9. For an ordinary homology theory H∗(−,−;G), if X is a CW-complex, then for any
n ∈ Z Hn(X) ∼= H̃n+1(ΣX).

Proof. Apply long exact sequence axiom on (CX,X): (H∗(CX) = 0 due to weak equivalence
axiom):

0 ∼= Hn+1(CX)→ Hn+1(CX,X)
∼=−→ Hn(X)→ Hn(CX) ∼= 0

Use excision axiom and weak equivalence axiom, we have:

H∗(CX,X) ∼= H∗(CX ∪ CX,CX) ∼= H∗(ΣX, ∗)

Proposition 2.10. For an ordinary homology theory H∗(−,−;G), if X is a pointed CW-complex
with X−1 := ∗, then for any n ≥ 0

Hq(X
n, Xn−1) ∼= H̃q(X

n/Xn−1) ∼=

{⊕
i∈In G q = n

0 q ̸= n

where In is set of all q-cells.

Proof. Use additivity axiom and lemma 2.9 to see that Hn(
∨
Sn) ∼=

⊕
G and Hq(

∨
Sn) = 0 for

q ̸= n. Use excision axiom and weak equivalence axiom to see

Hq(X
n, Xn−1) ∼= Hq(X

n ∪ CXn−1, CXn−1) ∼= Hq(X
n/Xn−1, ∗) ∼= H̃q(

∨
i∈In

Sn)

Corollary 2.11. If H∗(−,−) is an ordinary homology theory, then for a pointed CW-complex X
with X−1 := ∗, we have:

H̃q(X
n) = 0 for q > n

Hq(X
n) ∼= Hq(X

n+1) ∼= Hq(X) for q < n

Hn(X
n)

i∗−→ Hn(X
n+1) is epimorphism

for any n ≥ −1.

19



Proof. Use long exact sequence of (Xn+1, Xn):

· · · → Hq+1(X
n+1, Xn)

∂q+1−−−→ Hq(X
n)

i∗−→ Hq(X
n+1)→ Hq(X

n+1, Xn)
∂q−→ Hq−1(X

n)→ · · ·

· · · → H1(X
n+1, Xn)

∂1−→ H0(X
n)

i∗−→ H0(X
n+1)→ H0(X

n+1, Xn)

For q < n, Hq(X
n) ∼= Hq(X

n+1) ∼= · · · ∼= lim−→i∈NHq(X
i).

For q > n, if n > −1, Hq(X
n) ∼= Hq(X

n−1) ∼= · · · ∼= Hq(X
−1) ∼= 0,

if n = −1, H̃0(X
−1) ∼= 0 ∼= H̃q(X

−1).
For q = n, we have following exact:

→ Hn+1(X
n+1, Xn)

∂n+1−−−→ Hn(X
n)

i∗−→ Hn(X
n+1)→ Hn(X

n+1, Xn) ∼= 0

Definition 2.5. For pointed CW-complex X with X−1 := ∗ and a ordinary homology theory
H∗(−,−) the (reduced) cellular chain complex {C̃n(X), dn} of X is defined by:

C̃n(X) := Hn(X
n, Xn−1)

dn : Hn(X
n, Xn−1)

∂n−→ Hn−1(X
n−1)

i∗−→ Hn−1(X
n−1, Xn−2)

Note. Use cellular approximation, we can see that the construction C̃∗(−) is a functor.

Theorem 2.12. For any ordinary homology theory H∗(−,−) and any pointed CW-complex X,
(with X−1 := ∗) the n-th homology of cellular chain complex is isomorphic to H̃n(X):

Hn(C̃∗(X)) ∼= Hn(X, ∗)

if we set X−1 := ∅ in our C̃∗(X), then Hn(C̃∗(X)) ∼= Hn(X, ∅).

Proof. Notice that we have commutative diagram with each straight line exact: (use long exact
sequence of pairs, n > 0)

Hn−1(X
n−2) ∼= 0

Hn−1(X
n−1)

Hn+1(X
n+1, Xn) Hn(X

n, Xn−1) Hn−1(X
n−1, Xn−2)

Hn(X
n) = ker(∂n) = ker(dn)

Hn(X
n−1) ∼= 0 Hn(X

n+1) = coker(∂n+1)

Hn−1(X
n+1, Xn) ∼= 0

∂n

∂n+1

dndn+1

For n = 0:

H1(X
1, X0) H0(X

0, X−1) coker(d1) ∼= H0(X
1, X−1) H0(X

1, X0) ∼= 0
d1

Note. If the ordinary homology theory has coefficient Z, then the dn : C̃n(X)→ C̃n−1(X) is given
by:

Zi ∋ 1i = eni 7→
∑

j∈In−1

αji e
n−1
j
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where αji is degree of map

βji : S
n ≈ ∂eni

φi−→ Xn−1 → Xn−1/Xn−2 →
∨

j′∈In−1

Sn−1 pj−→ Sn−1

where φi is the characteristic map, pj maps every point not in Sn−1
j to ∗.

Corollary 2.13. For any ordinary homology theory H∗(−,−) and any relative CW-complex (X,A),
the cellular chain of X with is X−1 := A noted C∗(X,A), we have:

Hn(C∗(X,A)) ∼= Hn(X/A, ∗) ∼= Hn(X,A)

Proposition 2.14. If (X,A) is a (pointed) CW-pair, (with X−1 := ∗ =: A−1) use the natural
relative CW-complex (X,A) to obtain C∗(X,A), then C̃∗(X)/C̃∗(A) ∼= C∗(X,A) naturally.

Proof. Hn(X
n, Xn−1)/Hn(A

n, An−1) ∼= Hn((X/A)
n, (X/A)n−1)

and H0(X
0, X−1)/Hn(A

0, A−1) ∼= Hn((X/A)
0, (X/A)−1). Naturality:⊕

InX
Z⊕

InA
Z

⊕
InX−InA

Z

⊕
InY

Z⊕
InB

Z
⊕

InY −InB
Z

f∗

∼=

∼=

f∗

where InZ is the index set of n-cells of Z, f : (X,A)→ (Y,B) is a cellular map.

3 Homotopy and Eilenberg-Mac Lane
Spaces

3.1 Homotopy Excision Theorem and its Corollary

Theorem 3.1. (Blakers–Massey) Homotopy Excision Theorem:
For pointed CW-triad (X;A,B) such that C := A∩B ̸= ∅, if (A,C) is (m−1)-connected and (B,C)
is (n− 1)-connected where m ≥ 2, n ≥ 1. Then i : (A,C)→ (X,B) is an (m+ n− 2)-equivalence
for pairs.

Note. We can replace the ”CW-triad” with ”excisive triad” in condition by theorem 2.7.

Proof. See here.

Corollary 3.2. Suppose that Y0 ↪→ Y is cofibration, (Y, Y0) is (r− 1)-connected and Y0 is (s− 1)-
connected, then (Y, Y0)→ (Y/Y0, ∗) is (r + s− 1)-equivalence. (r ≥ 2, s ≥ 1)

Proof. Y0 ↪→ CY0 is cofibration and (CY0, Y0) is s-connected. Use homotopy excision theorem
(with X = Y ∪ CY0, A = Y, B = CY0, C = Y0) to see (Y, Y0) → (Y ∪ CY0, CY0) is (r + s − 1)-
equivalence. And (Y ∪CY0, CY0)→ (Y/Y0, ∗) is homotopy equivalence since Y0 ↪→ Y is cofibration.

Corollary 3.3. For n ≥ 2, f : X → Y is (n−1)-equivalence between (s−1)-connected spaces, then
(Mf , X)→ (C+

f , ∗) is (n+s−1)-equivalence. Where C+
f := Y ∪fC+X, C+X := (X×I)/(X×{1}).

is the unreduced mapping cone and the unreduced cone.

Proof. f is (n− 1)-equivalence implies (Mf , X) is (n− 1)-connected. Use corollary above.
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Corollary 3.4. For n ≥ 2, if f : X → Y is pointed map between (n − 1)-connected well-pointed
spaces (that is, pointed space whose inclusion of the base point is (closed) cofibration). Then Cf is
(n− 1)-connected and πn(Mf , X)→ πn(Cf , ∗) is isomorphism.

Proof. Use homotopy extension property to extend to unreduced case. f is map between (n− 1)-
connected space implies f is at least a (n−1)-equivalence. Therefore (Mf , X)→ (Cf , ∗) is (2n−1)-
equivalence, Since we have n < 2n− 1 for any n ≥ 2, πn(Mf , X)→ πn(Cf , ∗) is isomorphism.

Theorem 3.5. (Freudenthal Suspension Theorem) If X is well-pointed and (n − 1)-connected
(n ≥ 1), then the map:

σ : πq(X)→ πq+1(ΣX) ∼= πq(ΩΣX)

f 7→ Σf

is isomorphism if q < 2n− 1 and epimorphism if q = 2n− 1.

Proof. If we have f : (Iq, ∂Iq) → (X, ∗) then f × idI : Iq+1 → X × I will give a map f × idI :
(Iq+1, ∂Iq+1, ∂Iq × I ∪ ∂I × {1})→ (CX,X, ∗) since Jq = ∂Iq × I ∪ ∂I × {0}, it does not give a
map in πq+1(CX,X). we should change f × idI into f ×−idI . we have commutative diagram:

πq+1(CX,X) πq+1(CX/X, ∗) [f ×−idI ] [p ◦ (f ×−idI)]

πq(X) πq+1(ΣX) [f ] [−Σf ]

p∗

∂

−σ

i

Where p : (CX,X) → (CX/X, ∗) is the canonical quotient map and i : [f ] → [f ×−idI ] makes
πq+1(CX) → πq+1(CX,X) → πq(X) → πq(CX) split in middle (that is, i is inverse of the
connecting homomorphism ∂). We verify the commutativity:

−Σf : (Iq+1, ∂Iq+1)→ (CX/X, ∗)
(s, t) 7→ f(s) ∧ (1− t)

p ◦ (f ×−idI) : (Iq+1, ∂Iq+1)→ (CX/X, ∗)
(s, t) 7→ f(s) ∧ (1− t)

Since X ↪→ CX is cofibration and n-equivalence between (n − 1)-connected spaces, p is an 2n-
equivalence. Therefore, q + 1 < 2n implies −σ is isomorphism, q + 1 = 2n implies −σ is epimor-
phism, and we have −σ is iff σ is.

Corollary 3.6. If Y is well pointed (n−1)-connected space then Y → ΩΣY is (2n−1)-equivalence.
By theorem 1.3, for any CW-complex X with dimX < 2n − 1, Σ : [X,Y ]∗ → [ΣX,ΣY ]∗ ∼=
[X,ΩΣY ]∗ is bijection.

Definition 3.1. We now define the q-th stable homotopy group:

πsk(X) := lim−→
r

πk+r(Σ
rX) ∼= π2k+2(Σ

k+2X) ∼= πk+n(Σ
nX) (n− 1 > k)

(Since ΣnX is (n− 1)-connected)
And stable homotopy class:

[X,Y ]s∗ := lim−→
r

[ΣrX,ΣrY ]

Note. We’ll see later that {πsn}n∈N defines a generalized homology theory.
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3.2 Hurewicz Theorem

First, we use homotopy excision theorem to prove following lemmas:

Lemma 3.7. (every Sna ≈ Sn) We have canonical ia : Sna ↪→
∨
a∈A S

n
a and for n > 1:

πn(
∨
a∈A

Sna )
∼=

⊕
a∈A

Za

where [ia] = 1 ∈ Za ⊆
⊕

a∈A Za and every Za ∼= Z.
For n = 1:

πn(
∨
a∈A

S1
a)
∼=

∐
a∈A

Za

where
∐

is taken in category Grp, [ia] = 1 ∈ Za ⊆
∐
a∈A Za and every Za ∼= Z.

Proof.
Case n = 1:
Apply the Seifert-van Kampen theorem.
Case n > 1:
Suppose each Sna have CW-complex structure with one 0-cell and one n-cell. Consider finite product∏

1≤i≤k S
n
i and its subcomplex, finite wedge product

∨
1≤i≤k S

n
i .

The inclusion ∨
1≤i≤k

Sni ↪→
∏

1≤i≤k

Sni

is (2n−1)-equivalence since
∏

1≤i≤k S
n
i −

∨
1≤i≤k S

n
i only have cells of dim ≥ 2n. (use lemma 1.13)

Use exact homotopy sequence of pair, we deduce that πq(
∨

1≤i≤k S
n
i )→ πq(

∏
1≤i≤k S

n
i )
∼=

⊕
1≤i≤k Z

is an isomorphism for q ≤ 2n − 2. And Sni ↪→
∨

1≤i≤k S
n
i ↪→

∏
1≤i≤k S

n
i is just the i-th inclusion

Sni ↪→
∏

1≤i≤k S
n
i which represents 1 ∈ Zi ↪→

⊕
1≤i≤k Zi. Infinite wedge case:

⊕
1≤i≤k πq(S

n
i ) πq(

∨
1≤i≤k S

n
i )

⊕
a∈A πq(S

n
a ) πq(

∨
a∈A S

n
a )⊕

a∈A ia∗

∼=

⊕
a∈A ia∗ is monomorphism since every homotopy Sn × I →

∨
a∈A S

n
a has a compact image, and⊕

a∈A ia∗ is epimorphism since every map Sn × I →
∨
a∈A S

n
a has a compat image.

Lemma 3.8. For n ≥ 1, if we have a map f :
∐
a∈A Za →

∐
b∈B Zb (case n = 1)

or a map f :
⊕

a∈A Za →
⊕

b∈B Zb (case n > 1).
Then there exists a map ϕ :

∨
a∈A S

n
a →

∨
b∈B S

n
b unique up to homotopy and satisfy πn(ϕ) = f .

Proof. Suppose f(1a) = [ϕa] ∈ [Sn,
∨
b∈B S

n
b ]∗, then ϕa is indeed a map Sna →

∨
b∈B S

n
b . Now we

define ϕ :=
∨
a ϕa :

∨
a∈A S

n
a →

∨
b∈B S

n
b . For any a ∈ A, ϕ|Sn

a
= ϕa, we have

πn(ϕ)(1a) = [ϕ|Sn
a
◦ idSn

a
] = [ϕa] = f(1a)

which implies πn(ϕ) = f since they are group homomorphisms.
Uniqueness up to homotopy: πn(ϕ)[1a] = πn(ϕ

′)[1a] implies ϕ|Sn
a
≃ ϕ′|Sn

a
rel ∗. Therefore

ϕ ≃ ϕ′ rel ∗.

Definition 3.2. If Hn is a ordinary homology theory with coefficient Z,
then the map

hX : πn(X)→ H̃n(X) := Hn(X, ∗)
[f ] 7→ f∗(1) ( f∗ : H̃n(S

n)→ H̃n(X) )

is called Hurewicz Homomorphism.
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Note. h(−) is natural transformation since we have

πn(X) H̃n(X) [f ] f∗(1)

πn(Y ) H̃n(Y ) [g ◦ f ] (g ◦ f)∗(1) = (g∗ ◦ f∗)(1)

g∗

hX

hY

g∗

commutes. Moreover, it commutes with connecting homomorphism.

Lemma 3.9. If X =
∨
a∈A S

n, hX : πn(X) → H̃n(X) is abelianization if n = 1, isomorphism if
n ≥ 2.

Proof. Directly from lemma 3.8. (we used homotopic properties of spheres only in proving is
lemma)

Theorem 3.10. (Hurewicz) If X is (n−1)-connected, then hX : πn(X)→ H̃n(X) is abelianization
if n = 1, isomorphism if n ≥ 2.

Proof. We can assume X is CW-complex with Xn−1 = ∗ and each characteristic map is pointed.
(since we have theorem 1.5)
For CW-complex X, πn(X

n+1) ∼= πn(X) and Hn(X
n+1) ∼= Hn(X), Since we have cellularity of

homotopy group and cellularity of homology.
Then we have Xn =

∨
b∈B S

n
b , X

n+1 = Cϕ where ϕ :
∨
a∈A S

n
a → Xn are the characteristic maps.

Use naturality of h(−), we have maps between exact sequence:

πn(
∨
a∈A S

n
a ) πn(X

n) πn(Cϕ) 0

H̃n(
∨
a∈A S

n) H̃n(X
n) H̃n(Cϕ) 0

ϕ∗

h∨
a∈A Sn

a
hXn

ϕ∗

hCϕ

If n > 1, exactness of top row is directly from lemma 3.2. ((Mϕ,
∨
a∈A S

n
a ) is (n − 1)-connected

since we have lemma 1.13) 5-lemma shows that hCϕ
is isomorphism.

If n = 1, Seifert-van Kampen theorem shows that π1(Cϕ) = π1(X
n)/⟨Imϕ∗⟩nor. (where for A ⊆

a group G, ⟨A⟩nor := {gAg-1 | g ∈ G}). The top row is not exact, but top row’s abelianization
is exact since ⟨Im f⟩nor/[B,B] = Im f/[B,B] for any group morphism f : A → B. Therefore we
have diagram below with the middle row and the bottom row exact:

A B G = B/⟨Im f⟩nor 0 0

Aab Bab Gab 0 0

A′ B′ G′ 0 0

f q

qabfab

∼= ∼= ∼= ∼=

Finally apply 5-lemma on the middle row and the bottom row.

Corollary 3.11. (Relative version of Hurewicz theorem) If (X,A) is (n−1)-connected CW-pair, A
is 1-connected subcomplex and n ≥ 2, then the Hurewicz morphism h(X,A) : πn(X,A)→ Hn(X,A)
(defined analogue to hX) is isomorphism.

Proof. Use theorem 3.2 and Hurewicz theorem of hX/A.

Uniqueness of Ordinary Homology Theory:
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Theorem 3.12. If H∗(−,−) is ordinary homology theory with coefficient Z on CW-complexes,
then H∗(−,−) is unique up to natural isomorphism.

Proof. Since Hn(C∗(X)) ∼= Hn(X) naturally (in X), our goal is to prove the complex defined by

C ′
n(X) := πn(X

n, Xn−1)ab

d′n := πn(X
n, Xn−1)ab

∂−→ πn−1(X
n−1)ab → πn−1(X

n−1, Xn−2)ab

is isomorphic to C∗(X) naturally. Isomorphic:

πn(X
n, Xn−1)ab πn−1(X

n−1)ab πn−1(X
n−1, Xn−2)ab

πn(X
n/Xn−1)ab πn−1(X

n−1/Xn−2)ab

Hn(X
n/Xn−1) Hn−1(X

n−1) Hn−1(X
n−1/Xn−2)

∂

∼= ∼=

∼= ∼=

Naturality directly follows from naturality of Hurewicz morphism.

Note. Similarly uniqueness pf ordinary homology theory with coefficient G.

3.3 Moore Spaces

Definition 3.3. A space X is Eilenberg-Mac Lane space of type K(G,n) (where G is group
and is abelian for n ≥ 2) if

πq(X) ∼=

{
G n = q

0 n ̸= q

We see that SPSn is a K(Z, n). Now we use this to construct other K(G,n).

Note. In order to construct K(G,n), we construct a space M(G,n) which have πn(M(G,n)) = G,
πq(M(G,n)) = 0 for q < n and we can apply SP on it to kill all dim > n homotopy group.

Proposition 3.13. For any k ∈ Z, there is a map ak : S1 → S1 with ak, and Cak = S1 ∪ak e2 is
the desired M(Z/kZ, 1) (that is SP(S1 ∪ak e2) is a K(Z/kZ, 1)).

Proof. Consider sequence S1 ak−→ S1 ↪→ Cak ↠ ΣS1 = Cak/S
1, we apply an usual form of Dold-

Thom Theorem to see that SP(Cak) → SP(S2) is a quasi-fibration with fiber SP(S1). Then we
have exact sequence:

· · · → πq(SPS
1)→ πq(SPCak)→ πq(SPS

2)→ πq−1(SPS
1)→

· · · → π2(SPS
1)→ π2(SPCak)→ π2(SPS

2)

→ π1(SPS
1)→ π1(SPCak)→ π1(SPS

2)

We can conclude that πq(SPCak) = 0 for any q ̸= 0, 1 and:

0→ π2(SPCak)→ π2(SPS
2) = Z ∂−→ π1(SPS

1) = Z→ π1(SPCak)→ 0

exact. Where ∂ is defined by:

π2(SPS
2) ∼= [D2, S1, ∗; SPCak ,SPS1, ∗] ∋ f 7→ f |S1 ∈ [S1, S1]∗

(Now we want to show that ∂ is multiplication by k)
The 1 ∈ Z ∼= π2(SPS

2) is represented by [i2 : S2 ↪→ SPS2].

Since [D2, S1, ∗; SPCak ,SPS1, ∗] p∗−→ [D2, S1; SPS2, ∗] is isomorphism,

25



and the map φ : (D2, S1)
ide2∪ak−−−−−→ (Cak , S

1) ↪→ (SPCak ,SPS
1) satisfy p ◦ φ = i2,

the 1 ∈ Z ∼= π2(SPCak ,SPS
1) is represented by φ. Then we have ∂(1) is represented by φ|S1 =

i1 ◦ ak where i1 : S1 ↪→ SPS1.
The map ∂ is Z ∋ n 7→ kn ∈ Z since [i1 ◦ ak] = k.
Therefore π2(SPCak) = 0 and π1(SPCak) = Z/kZ.

Proposition 3.14. For each n ≥ 1, k ∈ Z, SP(Sn ∪Σn−1ak e
n+1) is a K(Z/kZ, n).

Proof. For q ≥ 1, Σ(Sq ∪Σq−1ak e
q+1) ≈ ΣSq ∪Σqak Σe

q+1 = Sq+1∪Σqak e
q+2 since Σ is left adjoint

of Ω in TOP∗ and the pushout is took in TOP∗. Observe that πq(SPX) ∼= πq+1(SPΣX), now
we have done.

Since H̃n(X) ∼= H̃n(X ∪ C∗) ∼= Hn(X, ∗), we have

πn(SP(
∨
i∈I

Xi)) = H̃n(
∨
i∈I

Xi) ∼= Hn(
∨
i∈I

Xi, ∗) ∼= Hn(
∐
i∈I

Xi,
∐
i∈I
∗) ∼=

⊕
i∈I

Hn(Xi, ∗) ∼=
⊕
i∈I

πn(SPXi)

We can deduce the following proposition immediately:

Proposition 3.15. For finitely generated abelian group G ∼= (
⊕

r Z) ⊕ (
⊕

1≤i≤k Z/diZ), (where
r ∈ N, each di ∈ Z) we have SP((

∨
r S

n) ∨ (
∨

1≤i≤k(S
n ∪adi e

n+1))) is a K(G,n).

Since every abelian group G have a free resolution sequence:

0→
⊕
a∈A

Z f−→
⊕
b∈B

Z ↠ G→ 0

exact. And for every group G = F (X)/⟨Y ⟩nor (where F (X) :=
∐
x∈X Zx is the free group functor

and ⟨Y ⟩nor is the normal subgroup generated by Y ), we have:

1→
∐

y∈⟨Y ⟩nor

Zy
f :1y 7→y−−−−−→

∐
x∈X

Zx ↠ G→ 1

exact.
Next proposition allows to construct spaces M(

⊕
a∈A Z, n) and M(

∐
a∈A Z, 1):

Definition 3.4. For n > 1, G an abelian group, we have exact sequence

0→
⊕
a∈A

Z f−→
⊕
b∈B

Z ↠ G→ 0

Then we have: (with ϕ is the map obtained using lemma 3.8)∨
a∈A

Sna
ϕ−→

∨
b∈B

Snb → Cϕ

the Moore space of type (G,n) is defined as M(G,n) := Cϕ.

For n = 1, G a group, we have exact sequence:

1→
∐

y∈⟨Y ⟩nor

Zy
f :1y 7→y−−−−−→

∐
x∈X

Zx ↠ G→ 1

Then we have: (with ϕ is the map obtained using lemma 3.8)∨
y∈⟨Y ⟩nor

S1
y
ϕ−→

∨
x∈X

S1
x → Cϕ

the Moore space of type (G, 1) is defined as M(G, 1) := Cϕ.
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Proposition 3.16. πn(M(G,n)) = G

Proof. For n > 1, use diagram:

Mϕ

X Y
ϕ

j
i p≃

To see:

· · · πn(
∨
a∈A S

n
a ) πn(Mϕ) πn(Mϕ,

∨
a∈A S

n
a ) πn−1(

∨
a∈A S

n
a ) · · ·

πn(
∨
b∈B S

n
b )

⊕
a∈A Za

⊕
b∈A Za πn(M(G,n))

i∗

∼=

f

∼=

ϕ∗
j∗∼=

q∗

Where q∗ is induced by q : (Mϕ,
∨
a∈A S

n
a ) → (Cϕ, ∗).

∨
a∈A S

n
a is (n − 1)-connected, implies

πn−1(
∨
a∈A S

n
a ) = 0. (Mϕ,

∨
a∈A S

n
a ) is (n − 1)-connected due to lemma 1.13. Therefore we have

q∗ is isomorphism using lemma 3.2. Diagram above reduces to:

0→
⊕
a∈A

Za
f−→

⊕
b∈B

Zb ↠ πn(M(G,n))→ 0

For n = 1, use Seifert-van Kampen theorem.

Proposition 3.17. For any n ≥ 1 and any group morphism f : G → G′ there exist morphism
fM :M(G,n)→M(G′, n) such that fM∗ = f .

Proof. We have following for n > 1: (since free Z-module is projective)

0
⊕

a∈A Za
⊕

b∈B Zb G 0

0
⊕

a′∈A′ Za′
⊕

b′∈B′ Zb′ G′ 0

i q

f

q′i′

r0r1

And we have following for n = 1: (where i(11a1b(1a·b)-1) := 1a1b(1a·b)
-1)

1
∐

(a,b)∈(G,G) Z1a1b(1a·b)-1
∐
g∈G Zg G 1

1
∐

(a′,b′)∈(G′,G′) Z1′a1
′
b(1a′·b′ )

−1

∐
g′∈G′ Zg′ G′ 1

f

q

q′

r0

i

i′

r1

We could obtain: (use lemma 3.8)

∨
a∈A S

n
a

∨
b∈B S

n
b Cϕ

∨
a′∈A′ Sna′

∨
b′∈B′ Snb′ Cϕ′

ϕ

χ1

ϕ′

χ0 fM≃
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Finally we have: (use universal property of cokernel)

0 πn(
∨
a∈A S

n
a ) πn(

∨
b∈B S

n
b ) πn(Cϕ) 0

0 πn(
∨
a′∈A′ Sna′) πn(

∨
b′∈B′ Snb′) πn(Cϕ′) 0

ϕ∗=i

ϕ′
∗=i

′

χ1∗=r1 χ0∗=r0 fM∗=f

Theorem 3.18. SP(M(G,n)) is a K(G,n) if G is abelian.

Proof. In the construction of Moore spaces, we have: (use notations in the construction)∨
a∈A S

n
a

∨
b∈B S

n
b

Mϕ Cϕ

ϕ

≃

which induces quasi-fibration SPMϕ → SPCϕ with fiber SP
∨
a∈A S

n
a . Then we have long exact

sequence:

· · · → πq(SP
∨
a∈A

Sna )
ϕ∗−→ πq(SPMϕ)→ πq(SPCϕ)→ πq−1(SP

∨
a∈A

Sna )→ · · ·

Sequence above says if q ̸= n and q ̸= n+ 1, then πq(SPCϕ) = 0. If q = n+ 1, we have:

0 πn+1(Cϕ) πn(SP
∨
a∈A S

n
a ) πn(SP

∨
b∈B S

n
b ) πn(Cϕ) 0

0
⊕

a∈A Za
⊕

b∈B Zb G 0

ϕ∗

∼= ∼=

f

∼=

We have πn+1(Cϕ) = 0 since ϕ∗ is monomorphism.

Note. We have two equivalent ways to construct ordinary homology theory with coefficient G ∈ Ab
from Hn(−,−;Z):

1. Tensor cellular chain complex with G: C∗(X)⊗Z G (differentials are dn ⊗ idG)
2. Hn(X,A;G) := H̃n((X ∪ CA) ∧M(G,n))

Note. Construction of Eilenberg Mac-Lane space using Moore spaces is limited, there is another
construction of K(G,n) allows non-abelian group G for n = 1. (use geometric realization)

Definition 3.5. The weak product of pointed {Zi}i∈Z spaces is

◦∏
i∈N

Zi := lim−→
S∈Fin(N)

(
∏
i∈S

Zi)

whose underlying set is:

{(ai)i∈N ∈
∏
i∈N

Zi | only finite ai is not ∗ }

Theorem following shows why K(G,n) is important:

Theorem 3.19. If Y is a path-connected commutative associative H-space with strict identity
(1 · y = y), then there is a weak equivalence

◦∏
n≥1

K(πn(Y ), n)→ Y
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Moreover, we have weak equivalence ∏
n≥1

K(πn(Y ), n)→ Y

Proof. Take free resolution of πn(Y ):

0→
⊕
a∈A

Za
γ−→

⊕
b∈B

Zb
q−→ πn(Y )→ 0

(for n = 1, replace
⊕

with
∐
). and obtain:∨

a∈A S
n
a

∨
b∈B S

n
b Cϕ ∼=M(πn(Y, n))

∗ Y Ci ≃ Y

ϕ

i

∨
b∈B g′b f ′

n≃

where [g′b] = q(1b). We have f ′n∗ : πn(M(πn(Y ), n))→ πn(Y ) is an isomorphism.
Construct f ′kn :

∏
kM(πn(Y ), n)→ Y by:

f ′kn :
∏
k

M(πn(Y ), n)→ Y

(a1, a2, . . . , ak) 7→ f(a1) · f(a2) · · · f(ak)

where − · − : Y × Y → Y is the H-multiplication on Y .
Strict identity, commutativity and associativity says it is homotopically unique rel ∗.
Therefore we have a well-defined map fkn : SPkM(πn(Y ), n) → Y (for each k) which commutes
with inclusion SPk ↪→ SPk+1.
Directly from above, we have fn : SPM(πn(Y ), n) → Y induces isomorphism on πn(−). (in case
n = 1, π1(Y ) is abelian since Y is a commutative H-space)
Similarly we have f : SP(

∨
nM(πn(Y ), n))→ Y obtained from

∨
n f

′
n :

∨
nM(πn(Y ), n)→ Y .

SP(
∨
nM(πn(Y ), n)) ≈

◦∏
n SPM(πn(Y ), n) since we have SP(X1 ∨X2) ≈ SPX1 × SPX2 and SP

commute with directed colimit. We can deduce that f |SPM(πn(Y ),n) = fn from construction of the
homeomorphism.

Last,
◦∏
n≥1K(πn(Y ), n) ↪→

∏
n≥1K(πn(Y ), n) is weak homotopy equivalence since Sn have com-

pact image. (is homotopy equivalence since they are CW-complexes)

Corollary 3.20. If Y is a space, then there is a weak equivalence

◦∏
n≥1

K(Hn(Y ), n)→ SPY

Moreover, we have weak equivalence∏
n≥1

K(Hn(Y ), n)→ SPY

4 Cohomology and Spectra
4.1 Axiom for Cohomology and reduced Cohomology

Definition 4.1. An Unreduced Generalized Cohomology Theory (E∗, δ) is a functor to the
category of Z-graded abelian groups:
E∗(−,−) : TOPCW(2)

op → AbZ,
with a natural transformation of degree +1:
δn,(X,A) : E

n(A, ∅)→ En+1(X,A) (called connecting homomorphism)
satisfying following 3 axioms:
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• Homotopy Invariance:
Homotopy equivalence of pairs f : (X,A)→ (Y,B) induces isomorphism

E∗(f) : E∗(Y,B)→ E∗(X,A)

• Long Exact Sequence:
Map A ↪→ X induces a long exact sequence together with δ:

· · ·En(X,A)→ En(X)→ En(A)
δ−→ En+1(X,A)→ · · ·

where En(X) := En(X, ∅).

• Excision:

If (X;A,B) is an excisive triad (that is, X =
◦
A ∪

◦
B), then inclusion (A,A ∩B) ↪→ (X,B)

induces isomorphism
E∗(A,A ∩B) ∼= E∗(X,B)

We say (E∗, δ) is additive if in addition:
• Additivity:
If (X,A) =

∐
λ(Xλ, Aλ) in TOPCW(2), then inclusions iλ : (Xλ, Aλ) → (X,A) induces

isomorphism

(
∏

i∗,λ) : E
∗(X,A) ∼=

∏
λ

E∗(Xλ, Aλ)

We say (E∗, δ) is ordinary if (E∗, δ) satisfy all axioms above and:
• Dimension:

E∗̸=0(∗, ∅) = 0
An unreduced ordinary cohomology theory is called with coefficient G if E0(∗, ∅) = G.

Definition 4.2. An Reduced Generalized Cohomology Theory (Ẽ∗, σ) is a functor from
opposite of category of pointed CW-complexes to the category of Z-graded abelian groups:

Ẽ∗(−) : TOP
∗/
CW

op
→ AbZ,

with a natural isomorphism of degree +1:
σ : Ẽ∗(−) ∼= Ẽ∗+1(Σ(−)) (called suspension isomorphism)
satisfying following 2 axioms:

• Homotopy Invariance:
Homotopic pointed maps f, g : X → Y induces same map:

Ẽ∗(f) = Ẽ∗(g) : Ẽ∗(Y )→ Ẽ∗(X)

• Exactness:
Pointed map i : A ↪→ X and j : X ↪→ Ci gives a exact sequence in AbZ

Ẽ(Ci)
Ẽ∗(j)−−−−→ Ẽ∗(X)

Ẽ∗(j)−−−−→ Ẽ∗(A)
We say (Ẽ∗, σ) is additive if in addition:

• Wedge Axiom:
The canonical comparison morphism (induced by morphisms Xi ↪→

∨
iXi)

Ẽ∗(
∨
i

Xi)→
∏
i

Ẽ∗(Xi)

is isomorphism.

We say (Ẽ∗, σ) is ordinary if (Ẽ∗, σ) satisfy all axioms above and:
• Dimension:

Ẽ∗̸=0(S0) = 0
A reduced ordinary cohomology theory is called with coefficient G if Ẽ0(S0) = G.

Note. They are related to each other by E∗(X,A) := Ẽ∗(X ∪ CA) and Ẽ∗ := E∗(X, ∗). (proof is
omitted)
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4.2 Brown Representability Theorem

We will prove that any additive reduced cohomology theory is naturally isomorphic to some
[−, Y ]∗.

Definition 4.3. C0 := Ho(C), where C is category of path-connected pointed CW-complexes.

Definition 4.4. A weak limit/colimit is just ordinary limit/colimit without the uniqueness its in
universal property.

Lemma 4.1. C0 have weak coequalizers

Proof. If we have map f, g : A → X in C0 then define Z := X1 ∪f (A × I) ∪g X2/(x, 0) ∼ (x, 1)
where X1 = X × {0}, X2 = X × {1}. j : X ↪→ Z is the weak coequalizer map. i : A × I ↪→ Z is
the homotopy j ◦ f ≃ j ◦ g.
For s : X → Y such that there is h : s ◦ f ≃ s ◦ g, we have s ∪ h ∪ s : X1 ∪f (A × I) ∪g X2 → Y ,
and it defines a map s′ : Z → Y such that s′ ◦ j = s.

Lemma 4.2. Suppose {Yn}n∈N is a sequence of objects in C0 with for all n ∈ N, in : Yn ↪→ Yn+1

is cofibration.
Let Y := lim−→n

Yn, then there is coequalizer diagram:

∨
n Yn

∨
n Yn Y

∨
n in

∨
n jn∨

n idYn

where jn : Yn ↪→ Yn+1 ↪→ Y .

Proof. jn+1◦in = jn◦ idYn , and if we have g :
∨
n Yn → Z such that g◦

∨
n in ≃ g◦

∨
n idYn . Define

gn := g|Yn , use induction on n and HEP of cofibration, we have g′n ≃ gn such that g′n+1 ◦ in = g′n,
there data together defines a g′ : Y → Z satisfy desired properties.

Definition 4.5. A Brown functor is a functor H : Cop
0 → Set∗/ send coproducts to products,

weak coequalizers to weak equalizers:

H(
∨
i

Xi) ∼=
∏
i

H(Xi)

If j : X → Z is coequalizer of f, g : A→ X,
then H(j) : H(Z)→ H(X) is equalizer of H(f), H(g) : H(X)→ H(A).

Note. Every additive reduced cohomology theory Ẽn(−) : TOP
∗/
CW

op
→ Ab→ Set∗/ is equivalent

to a Brown functor.

Definition 4.6. Any u ∈ H(Y ) determine a natural transformation Tu : [−, Y ]∗ → H(−) by

[X,Y ] ∋ f H(f)(u) ∈ H(X)

[X ′, Y ] ∋ f ◦ a H(f ◦ a)(u) ∈ H(X ′)

where a ∈ [X ′, X].
u ∈ H(Y ) is n-universal (n ≥ 1) if Tu,Sq : [Sq, Y ]∗ → H(Sq) is isomorphism for 1 ≤ q ≤ n − 1
and epimorphism for q = n.
u ∈ H(Y ) is universal if u is n-universal forall n ≥ 1.
Y is called an classifying space for H if there exists u ∈ H(Y ) that is universal.

Lemma 4.3. If H is a Brown functor, Y, Y ′ ∈ C0, u ∈ H(Y ), u′ ∈ H(Y ′) are universal, and
there is a map f : Y → Y ′ such that H(f)(u′) = u, then f is a weak equivalence.
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Proof. Directly from Tu,Sq , Tu′,Sq are isomorphisms:

πq(Y ) πq(Y
′)

H(Sq)

f∗

Tu′,Sq
Tu,Sq

Lemma 4.4. If H is a Brown functor, Y ∈ C0 and u ∈ H(Y ), then there exists Y ′ ∈ C0 obtained
from Y by attaching 1-cells, and a 1-universal element u′ ∈ H(Y ′) such that H(i)(u′) = u ∈ H(Y ).
(where i : Y ↪→ Y ′)

Proof. Let Y ′ := Y ∨ (
∨
a∈H(Y ) S

1
a), H(i) is just projection:

H(Y ′) ∼= (H(Y )×
∏
a∈H(S1)H(S1

a))→ H(Y ).

Let ga := S1 ≈ S1
a ↪→ Y ′,

u′ := (u,
∏
a a) ∈ H(Y )×H(

∨
a∈H(S1) S

1
a).

Tu′,S1 : [S1, Y ′]∗ → H(S1) is epimorphism since H(ga)(u
′) = a ∈ H(S1).

Lemma 4.5. If H is a Brown functor, Y ∈ C0 and u ∈ H(Y ) is n-universal (n ≥ 1), then
there exists Y ′ ∈ C0 obtained from Y by attaching (n + 1)-cells, and a (n + 1)-universal element
u′ ∈ H(Y ′) such that H(i)(u′) = u ∈ H(Y ). (where i : Y ↪→ Y ′)

Proof. Let K := ker(Tu,Sn), we have:

∗ → K ↪→ [Sn, Y ]∗
Tu,Sn

−−−−→ H(Sn)→ ∗

Let Y1 := Y ∨ (
∨
i∈H(Sn+1) S

n+1
i ). We notice a cofib sequence:∨

k∈K

Snk
f−→ Y1 → Cf

where f :=
∨
k∈K k. Let Y

′ := Cf .
u1 := (u,

∏
a∈H(Sn+1) a) ∈ H(Y1) where ga := Sn+1 ≈ Sn+1

a ↪→ Y1. The cofib sequence is just a
weak coequalizer diagram in C0: ∨

k∈K S
n
k Y1 Y ′

f

0

Apply H on it:

H(Y ′) H(Y1) H(
∨
k∈K S

n
k )

We have H(f)(u1) =
∏
k∈K H(k)(u1) =

∏
k∈K H(k)(u) =

∏
k∈K Tu,Sn(k) = 0 = H(0)(u1).

By definition of weak equalizer, there exists u′ ∈ H(Y ′) such that H(i)(u′) = u ∈ H(Y ). (i : Y ↪→
Y ′)
Verify that u′ is (n+ 1)-universal:
Tu′,Sn+1 is epimorphism since Tu′,Sn+1(i1 ◦ ga) = Tu1,Sn+1(ga) = a ∈ H(Sn+1).
Current goal is to prove Tu′,Sq , q ≤ n are isomorphisms.
We have commutative diagram:

πq+1(Y
′, Y ) πq(Y ) πq(Y

′) πq(Y
′, Y )

H(Sq)

i∗

Tu,Sq
Tu′,Sq

And we notice that πq(Y
′, Y ) = 0 for q ≤ n. Then we have

Tu,Sq is isomorphism for q < n and epimorphism for q = n implies that
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Tu′,Sq is isomorphism for q < n and epimorphism for q = n.
For any k ∈ K ↪→ πn(Y ), i ◦ k = 0 ∈ πn(Y ′). That is, K ⊆ ker(i∗).
And we also have ker(i∗) ⊆ K, since Tu′,Sn ◦ i∗ = Tu,Sn .
ker(i∗) = K := ker(Tu,Sn) implies that Tu′,Sn is isomorphism.

Theorem 4.6. H is a Brown functor, Y ∈ C0 and u ∈ H(Y ) then there is a classifying space Y ′

for H such that (Y ′, Y ) is a relative CW-complex and the universal element u′ ∈ H(Y ′) satisfying
H(i)(u′) = u. (i : Y ↪→ Y ′)

Proof. Construct spaces {Yn}n∈N and un ∈ H(Yn) as following:
1. Y0 := Y , u0 := u
2. Y1, u1 is obtained from lemma 4.4.
3. Use lemma 4.5 to construct Yn+1, un+1 from Yn, un.

Let Y ′ := lim−→{Y0 ↪→ · · · ↪→ Yn ↪→ Yn+1 ↪→ · · · } then we have weak equalizer diagram:

H(Y ′)
∏
nH(Yn)

∏
nH(Yn)∏

n∈N
H(idYn )

∏
n∈N

H(in)

and
(
∏
n∈N

H(in))(
∏
n∈N

un) =
∏
n∈N

un =
∏
n∈N

H(idYn
)(
∏
n∈N

un)

(by H(in)(un+1) = un) Then there exists u′ ∈ H(Y ′) satisfying ∀n ∈ N, H(jn) = un. (where
jn : Yn ↪→ Y ′)
Verify that u′ is universal:

πq(Yq+1) πq(Yq+2) · · · πq(Y
′)

H(Sq)

∼= ∼= ∼=

(The isomorphisms in diagram are Tuq+1,Sq , Tuq+2,Sq , Tu′,Sq ).

Corollary 4.7. For any Brown functor H, there exist classifying spaces for H which are CW
complexes.

Proof. Use theorem 4.6 with Y = ∗.

Lemma 4.8. H is a Brown functor, u ∈ H(Y ) is a universal element, i : A ↪→ X is a relative
CW-complex. Given map g : A→ Y and v ∈ H(X) satisfy:

H(X) ∋ v

H(Y ) ∋ u H(A) ∋ H(g)(u) = H(i)(v)

Then exists map g′ : X → Y such that g′|A = g and diagram:

H(X) ∋ v = H(g′)(u)

H(Y ) ∋ u H(A)

H(g′)

commutes.
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Proof. Let (Z, j) be weak coequalizer of the diagram:

A X

Y X ∨ Y

i

g i1

i2

then we have weak equalizer diagram:

H(Z) H(X)×H(Y ) H(A)
H(i1◦i)

H(i2◦g)

We also have

H(A) H(X)

H(Y ) H(X)×H(Y )

H(i)

H(g) p1=H(i1)

p2=H(i2)

which implies H(i) ◦H(i1)(v, u) = H(i)(v) = H(g)(u) = H(g) ◦H(i2)(v, u).
Then there is a element u+ ∈ H(Z) such thatH(j)(u+) = (v, u). Use theorem 4.6 to obtain relative
CW-complex (Z ′, Z) and universal element u′ ∈ H(Z ′) such that H(iZ)(u

′) = u+. (iZ : Z ↪→ Z ′)
By lemma 4.3, j′ := iZ ◦ j ◦ i2 : Y ↪→ X ∨ Y ↪→ Z ↪→ Z ′ is a weak equivalence. We also have

diagram in TOP
∗/
CW: (since (Z, j) is weak coequalizer in C0)

A X

Y Z ′

i

g iZ◦j◦i1

j′

≃

Apply HELP:

A X

Y Z ′

i

g iZ◦j◦i1

j′

g′

≃

and verify thatH(g′)(u) = H(g′)◦H(j′)(u′) = H(iZ◦j◦i1)u′ = H(i1)◦H(j)(u+) = H(i1)(v, u) = v.

Theorem 4.9. If Y is a classifying space for a Brown functor H and u ∈ H(Y ) is a universal
element, then Tu : [−, Y ]→ H(−) is a natural isomorphism.

Proof. Tu,X is epimorphism:
For v ∈ H(X), use lemma 4.8 with (X,A) := (X, ∗) to obtain a map g′ : X → Y such that
Tu,X(g′) = H(g′)(u) = v.
Tu,X is monomorphism:
Let f0, f1 : X → Y such that Tu,X(f1) = Tu,X(f2).
Define CW-complex X ′ := X × I/{∗}× I with CW-structure X ′q = (Xq ×∂I ∪Xq−1× I)/{∗}× I
for q ≥ 0.
Define h : X ′ → X by (x, t) 7→ x and define v ∈ H(X ′) by v = H(f0 ◦ h)(u).
Let A′ := X∨X = X×∂I/{∗}×∂I, i : A′ ↪→ X ′ and define f : A′ → Y by (a, 0) 7→ f0(a), (a, 1) 7→
f1(a). Then we have H(f)(u) = (H(f0)(u), H(f1)(u)) = (H(f0)(u), H(f0)(u)) = H(f0 ◦h◦ i)(u) =
H(i)(v). Use lemma 4.8 with (X,A) = (X ′, A′) to obtain a f ′ : X ′ → Y such that f ′|A′ = f and
H(f ′)(u) = v.

h : X × I → X ′ f ′

−→ Y is the desired homotopy g0 ≃ g1.
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Corollary 4.10. If Y, Y ′ are classifying spaces of a Brown functor H, and u ∈ H(Y ), u′ ∈ H(Y ′)
are their universal elements, then there is a homotopy equivalence f : Y → Y which is unique up
to homotopy and satisfy H(f)(u′) = u.

Proof. By theorem 4.9, Tu′,Y : [Y, Y ′] → H(Y ) is isomorphism. Then there is unique f : [Y, Y ′]
such that Tu′,Y (f) = u. (notice that Tu′,Y (f) = H(f)(u′)) By lemma 4.3 and theorem 1.9, f is
homotopy equivalence.

Definition 4.7. A sequential pre-spectrum in topological spaces is:

• A N-graded compactly generated space : X∗ := {Xn ∈ TOP
∗/
CG}n∈N.

• Structure maps : {σn : ΣXn → Xn+1}n∈N.

Map between sequential pre-spectra is map between N-graded spaces fn : Xn → Yn such that

ΣXn ΣYn

Xn+1 Yn+1

Σfn

σn σ′
n

fn+1

commutes.
An Ω-prespectrum is a sequential spectrumX∗ with adjoints of structure maps σn : Xn → ΩXn+1

are weak equivalences.
For an Ω-prespectrum X∗, we can extend it into a Z-graded space by setting X−n := ΩnX0.

Theorem 4.11. If (Ẽ∗, σ) is a reduced additive cohomology theory, then there exist homotopi-
cally unique Ω-prespectrum Y∗ (each Yn is a CW-complex) such that En(−) ∼= [−, Yn]∗ naturally.
(naturality implies diagram below commutes)

Ẽn(−) [−, Yn]∗

Ẽn+1(Σ(−)) [Σ(−), Yn+1]∗ ∼= [−,ΩYn+1]∗

If Y∗ is an Ω-prespectrum, then Ẽn := [−, Yn]∗, σn : [−, Yn]∗ → [−,ΩYn+1] ∼= [Σ(−), Yn+1] is a
reduced additive cohomology theory.

Definition 4.8. For an abelian group A, the Eilenberg-Mac Lane prespectrumKA∗ is defined
by KAn := K(A,n). Structure maps is KAn →M → ΩKAn+1 where M is a CW-approximation
of ΩKAn+1, and homotopy equivalence KAn →M is obtained from corollary 4.10.

Proposition 4.12. If a reduced additive cohomology thoery H̃∗, σ is ordinary, then H̃n(−) ∼=
[−,KAn]∗ naturally.

Proof.

5 Towers And Homotopy Limits
5.1 Pointed and Unpointed Homotopy Classes

Proposition 5.1. There are pointed spaces X,Y ∈ TOP∗/, if X is well-pointed, then there is a
right action of π1(Y, y0) on [X,Y ]∗.

Proof. The right action is given by: [f ] · [a] := [f̂a,1] where f̂a,1 := f̂a(−, 1)

∗ X

∗ × I X × I

Y

x0

f̂a

f

a∈π1(Y,y0)
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Verify it is well-defined:
By the property of closed cofibration, f̂a is unique up to homotopy, hence independent from choice
of a ∈ [a] and f ∈ [f ].
Verify it is an group action:
If e is the constant loop in π1(Y, y0), then f̂e(x, t) = f(x).

If [a], [b] ∈ π1(Y, y0) then [f ] · [a] = [f̂a,1], ([f ] · [a]) · [b] = [
ˆ

( ˆ a,1)fb,1]. define

h : X × I → Y

(x, t) 7→

{
f̂a(x, 2t) t ≤ 1/2

(̂f̂a,1)b(x, 2t− 1) t ≥ 1/2

Since h(−, 0) = f , h(x0,−) = a · b h ≃ f̂a·b. [f ] · ([a] · [b]) = [f̂a·b(−, 1)] = [h(−, 1)] = ([f ] · [a]) · [b].

Theorem 5.2. If X,Y ∈ TOP∗/ there is a forgetful map ϕ : [X,Y ]∗ → [X,Y ] where [X,Y ] is the
free homotopy class of (not necessarily pointed) maps X → Y . If (X,x0) is well-pointed and Y is
path-connected, then ϕ induces bijection ϕ : [X,Y ]∗/π1(Y, y0) ∼= [X,Y ].

Proof. ϕ is well-defined:
For any a ∈ π1(Y, y0), f is freely homotopic to f̂a(−, 1).
ϕ is injective:
If we have ϕ([f ]) = ϕ([g]) which means there is free homotopy h : f ≃ g, let a := h(x0,−), then
h ≃ f̂a, [f ] · [a] = [h(−, 1)] = [g].
ϕ is surjective:
Suppose g ∈ HomTOP(X,Y ) is an unpointed map, choose a path a : g(x0) ≃ y0, extend a, g:

∗ X

∗ × I X × I

Y

x0

h

g

a

ϕ([h(−, 1)]) = [g].

Theorem 5.3. If (W, e) is a well-pointed H-space, µ : W × W → W is its H-multiplication.
Then µ is homotopic to another H-multiplication µ′ such that µ′(−, e) = idW = µ′(e,−) is strict
identity.

Proof. Let l := µ ◦ (e, idW ) ≃ idW , r := µ ◦ (idW , e) ≃ idW ,

h :W ∨W × I →W

(w, e, t) 7→ r(w, t)

(e, w, t) 7→ l(w, t)

Then we have diagram: (since W ∨W →W ×W is cofib)

W ∨W W ×W

W ∨W × I W ×W × I

W

µ

h

ĥ

µ′ := ĥ(−,−, 1).
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Proposition 5.4. If (X,x0) is well-pointed space, (W, e) is a well-pointed H-space, then π1(W, e)
acts trivially on [X,W ]∗

Proof. For [f ] ∈ [X,W ]∗, a ∈ π1(W, e) define

h : X × I →W

(x, t) 7→ µ′(f(x), a(t))

[f ] · [a] = [h(−, 1)] = [f ] since h ≃ f̂a.

Corollary 5.5. If (X,x0) is well-pointed space, (Y, e) is a well-pointed path-connected H-space,
then ϕ : [X,Y ]∗ → [X,Y ] is a bijection.

Theorem 5.6. X is a space with every point well-pointed, π≤1(X) is the fundamental groupoid of
X there are functors

Ψn : π≤1(X)→ Grp

x0 7→ πn(X,x0)

Homπ≤1(X)(x0, x1) ∋ [a] 7→ ([Sn, X]∗ ∋ [f ] 7→ [f̂a(−, 1)])

with property : for every f : X → Y, [a] ∈ Homπ≤1(X)(x0, x1) diagram

πn(X,x0) πn(X,x1)

πn(Y, f(x0)) πn(Y, f(x1))

Ψn(a)

f∗

Ψn(f◦a)

f∗

commutes.

Lemma 5.7. Assume X,Y, Z are path-connected and well-pointed. Consider functor [−, Z]∗ apply
on Barratt-Puppe sequence

· · · → [ΣY,Z]∗
Σf∗

−−→ [ΣX,Z]∗
q∗−→ [Cf , Z]∗

i∗−→ [Y,Z]∗
f∗

−→ [X,Z]∗

The sequence is exact (in category Set∗/), and we have following:
1. [ΣX,Z]∗ acts from right on [Cf , Z]∗.
2. q∗ : [ΣX,Z]∗ → [Cf , Z]∗ is a map between right [ΣX,Z]∗-sets.
3. q∗([x]) = q∗([x′]) iff exists some [y] ∈ [ΣY,Z]∗ such that [x] = Σf∗([y]) · [x′].
4. i∗([z]) = i∗([z′]) iff exists some [x] ∈ [ΣX,Z]∗ such that [z] = [z′] · [x].
5. Im(Σq∗ : [Σ2X,Z]∗ → [ΣCf , Z]∗) is central subgroup of [ΣCf , Z]∗.

Proof. 1. Define h-coaction map:

uf : Cf → Cf ∨ ΣX

(y, 0) 7→ (y, 0)

(x, t) 7→

{
(x, 2t) ∈ Cf t ≤ 1/2

(x, 2t− 1) ∈ ΣX t ≥ 1/2

2.
Cf ΣX

Cf ∨ ΣX ΣX ∨ ΣX

uf

q

uX→∗

q∨idΣX

3. q∗([x]) = q∗([x′]) ⇔ q∗([x] · [x′]−1) = ∗ ⇔ there exists some [y] ∈ [ΣY,Z]∗ such that [x] ·
[x′]−1 = Σf∗(y).

37



4. If i∗([z]) = i∗([z′]), then there are maps c ≃ z, c′ ≃ z′ such that c|Y = c′|Y . (use HEP)
Define

x : ΣX → Z

(x, t) 7→

{
c′(x, 1− 2t) t ≤ 1/2

c(x, 2t− 1) t ≥ 1/2

we have [c] = [c′] · [x].
5. Let G := [ΣCf , Z], H := Im(Σq∗). Σuf gives the right action ⋆ of H on G. It is different

from the usual product · (given by vΣCf
) on G:

vΣCf
: ΣCf → ΣCf 0 ∨ ΣCf 1

(c, t) 7→

{
(c, 2t)0 t ≤ 1/2

(c, 2t− 1)1 t ≥ 1/2

Σuf : ΣCf → ΣCf ∨ Σ2X

(y, 0, t) 7→ (y, 0, t)

(x, s, t) 7→

{
(x, 2s, t) ∈ ΣCf s ≤ 1/2

(x, 2s− 1, t) ∈ Σ2X s ≥ 1/2

And we have (g ⋆ h) · (g′ ⋆ h′) = (g · g′) ⋆ (h · h′), which is equivalent to commutativity of
diagram below.

ΣCf

ΣCf ∨ Σ2X ΣCf 0 ∨ ΣCf 1

ΣCf 0 ∨ ΣCf 1 ∨ Σ2X0 ∨ Σ2X1

Σuf vΣCf

vΣCf
∨vΣ2X Σuf∨Σuf

Verify the commutativity:

Cf → ΣCf 0 ∨ ΣCf 1 ∨ Σ2X0 ∨ Σ2X1

(y, 0, t) 7→

{
(y, 0, 2t)0 t ≤ 1/2

(y, 0, 2t− 1)1 t ≥ 1/2

(x, s, t) 7→


(x, 2s, 2t)0 ∈ ΣCf 0 s ≤ 1/2, t ≤ 1/2

(x, 2s− 1, 2t)0 ∈ Σ2X0 s ≥ 1/2, t ≤ 1/2

(x, 2s, 2t− 1)1 ∈ ΣCf 1 s ≤ 1/2, t ≥ 1/2

(x, 2s− 1, 2t− 1)1 ∈ Σ2X1 s ≥ 1/2, t ≥ 1/2

Final step:

g · h = (g ⋆ 1) · (1 ⋆ h) = (g · 1) ⋆ (1 · h)
= (1 · g) ⋆ (h · 1) = (1 ⋆ h) · (g ⋆ 1) = h · g

Lemma 5.8. Assume X,Y, Z are path-connected and well-pointed. (dual version of lemma 5.7.)

We have long exact sequence for any f : X → Y : (in category Set∗/)

· · · → [Z,ΩX]∗
Ωf∗−−→ [Z,ΩY ]∗

j∗−→ [Z,Pf ]∗
p∗−→ [Z,X]∗

f∗−→ [Z, Y ]∗

And we have following:
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1. [Z,ΩY ]∗ acts from right on [Z,Pf ]∗.
2. j∗ : [Z,ΩY ]∗ → [Z,Pf ]∗ is a map between right [Z,ΩY ]∗-sets.
3. j∗([y]) = j∗([y

′]) iff exists some [x] ∈ [Z,ΩX]∗ such that [y] = Ωf∗([x]) · [y′].
4. p∗([z]) = p∗([z

′]) iff exists some [y] ∈ [Z,ΩY ]∗ such that [z] = [z′] · [y].
5. Im(Ωj∗ : [Z,Ω2Y ]∗ → [Z,ΩPf ]∗) is central subgroup of [Z,ΩPf ]∗.

Consider lemma 5.8 with f = i : Fb ↪→ E is a obtained from a Hurewicz fibration p : E → B.

Lemma 5.9. If there is a surjective Hurewicz fibration p : E → B between spaces with every point
is well-pointed, and B is path-connected, then there are functors ΛE,p : π≤1(E)→ Ho(TOP∗/) re-
stricts to give group homomorphisms π1(E, e)→ AutHo(TOP∗/)(Fe) (where Fe is the path-connected
component of Fp(e) containing e) and ΛB,p : π≤1(B)→ Ho(TOP) satisfying

π≤1(E) π≤1(B)

Ho(TOP∗/) Ho(TOP)

π≤1(p)

ΛE,p

U

ΛB,p

η

commutes up to a natural transformation η.

Proof. Construction of the two functors:

ΛB,p : π≤1(B)→ Ho(TOP)

b 7→ Fb := p−1(b)

[α : b ≃ b′] 7→ [α+(−, 1) : Fb → F ′
b]

where α+ is given by:

Fb × {0} E

Fb × I ∗ × I B

p

α

α+

ΛE,p : π≤1(E)→ Ho(TOP∗/)

e 7→ (Fe, e)

[γ : e ≃ e′] 7→ [γ+(−, 1) : (Fe, e)→ (F ′
e, e

′)]

where Fe is path-connected component of Fp(e) containing e, and γ
+ is given by:

Fe × {0} ∪ {e} × I E

Fe × I ∗ × I B

i∪γ

p

p◦γ

γ+

η is defined by ηe : Fe ↪→ Fp(e).
Naturality is come from γ+ ≃ (p ◦ γ)+|Fe×I relFe×{0}. (notice that natural transformation {ηe}
are maps in Ho(TOP))

Use ΛE,p|e : π1(E, e)→ AutHo(TOP∗/)(Fe) in lemma 5.9 and composition [Sn, Fe]∗×[Fe, Fe]∗ →
[Sn, Fe]∗ we obtain an π1(E, e) action on [Sn, Fe]∗ = πn(Fe).

Lemma 5.10. Assume (Y, y0) is an path-connected well-pointed space, let r : Y → ∗ be the trivial
fibration, the π1(Y, y0) action on πn(Y, y0) induced by ΛY,r is equivalent to the π1(Y, y0) action on
πn(Y, y0) in theorem 5.6
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Proof.
∗ Sn

∗ × I Sn × I Y

∗ × I Y × I

Y

f×idIidI

f

a+
α

f̂a

Notice that the map f̂a is homotopically unique.

Theorem 5.11. Long exact sequence of a Hurewicz fibration (F, e)
ι−→ (E, e)

p−→ (B, b) ending at
π1(B, b)

· · · →[S0,ΩnF ]∗
Ωnι∗−−−→ [S0,ΩnE]∗

Ωn−1p∗−−−−−→ [S0,Ωn−1Pι]∗
q∗−→ [S0,Ωn−1F ]∗ → · · ·

· · · →[S0,ΩF ]∗
Ωι∗−−→ [S0,ΩE]∗

p∗−→ [S0, Pι]∗

(
q∗−→[S0, F ]∗

ι∗−→ [S0, E]∗)

is an exact sequence of π1(E, e)-groups and therefore π1(F, e)-groups.
In more detail, the following statement holds:

1. For g′ ∈ π1(F, e) and x ∈ πn(F, e), g′ ·π1(F ) x = ι∗(g) ·π1(E) x.
2. For g ∈ π1(E, e) and x ∈ πn(B, b), g ·π1(E) x = p∗(g) ·π1(B) x.
3. For g ∈ π1(E, e) and x ∈ πn(F, e) = [S0,ΩnF ]∗, ι∗(gx) = gι∗(x).
4. For g ∈ π1(E, e) and x ∈ πn(E, e) = [S0,ΩnE]∗, p∗(gx) = gp∗(x).
5. For g ∈ π1(E, e) and x ∈ πn(B, b) = [S0,Ωn−1Pι]∗, q∗(gx) = gq∗(x).

Proof.

A Long Proofs
A.1 Proof of Dold-Thom Theorem

A.2 Proof of Homotopy Excision Theorem

Proof. Follow notations in the statement of the theorem. Define (pointed) the triad homotopy
group for q ≥ 2:

πq(X;A,B) := πq−1(PiB,X
, PiC,A

)

where iB,X : B ↪→ X, iC,A : C ↪→ A and Pf is the homotopy fiber

{(y, γ) ∈ Y ×M(I, Z)∗ | γ(1) = f(y)}

of pointed map f : Y → Z. Use long exact sequence of pairs:

· · · → πq(PiB,X
, PiC,A

)→ πq−1(PiC,A
)→ πq−1(PiB,X

)→ πq−1(PiB,X
, PiC,A

)→ πq−2(PiC,A
)→ · · ·

· · · → π1(PiB,X
, PiC,A

)→ π0(PiC,A
)→ π0(PiB,X

)
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and observe that πq(PiX,B
) ∼= πq+1(X,B) since for any f : Sq → PiX,B

we have:

Sq

PiB,X
M(I,X)∗

B X

f f ′

g

⌟

use the fact f ′ ∈M(Sq,M(I,X)∗)∗ ∼=M(Sq ∧ I,X)∗ ∋ f ′′ and Sq ∧ I ≈ Dq+1 with

Sq ↪→ Sq ∧ I ≈ Dq+1

s 7→ (s, 1)

the condition f ′(s)(1) = g(s) is equivalent to f ′′((s, 1)) = g(s), that is have a map f is equivalent
to have a map f ′′ : (Dq+1, Sq) → (X,B). With the analogue statement also valid for homotopies
Sq × I → PiX,B

, we have πq(PiB,X
) = [Sq, ∗;PiB,X

, ∗] ∼= [Dq+1, Sq;X,B] = πq+1(X,B).
Rewrites the long exact sequence of pairs above to:

· · · → πq+1(X;A,B)→ πq(A,C)→ πq(X,B)→ πq(X;A,B)→ πq−1(A,C)→ · · ·
· · · → π2(X;A,B)→ π1(A,C)→ π1(X,B)

Conditions m ≥ 1, n ≥ 1 guarantees π0(C)→ π0(A) and π0(C)→ π0(B) are surjections.
m ≥ 2 is equivalent to π1(A,C) = 0, which implies π0(C)→ π0(A) is bijection.
For x ∈ π0(A∩CB), we can always find b ∈ π0(B), iB,X ∗(b) = x or a ∈ π0(A), iA,X ∗(a) = x which
becomes b ∈ π0(B), iB,X ∗(b) = x or c ∈ π0(C), iC,X ∗(c) = x when π0(C) → π0(A) is bijection.
That is equivalent to π0(B)→ π0(X) is bijection, which means π1(X,B) = 0.

We only need to show that for 2 ≤ q ≤ m+ n− 2, πq(X;A,B) = 0.

With Jq−1 := (∂Iq−1 × I) ∪ (Iq−1 × {0}), we have:
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πq(PiB,X
, PiC,A

) = [Iq, ∂Iq, Jq−1;PiB,X
, PiC,A

, ∗]
= [Iq ∧ I; Iq, ∂Iq ∧ I, Jq−1 ∧ I → X;B,A, ∗]
:= relative homotopy classes of pointed maps

f : Iq ∧ I → X satisfying:


f(Iq) ⊆ B
f(∂Iq ∧ I) ⊆ A
f(∂Iq) ⊆ C
f(Jq−1 ∧ I) = ∗

“relative” means the homotopy h determine the classes

satisfy:


h(Iq × I) ⊆ B
h((∂Iq ∧ I)× I) ⊆ A
h(∂Iq × I) ⊆ C
h((Jq−1 ∧ I)× I) = ∗

(notice that ∂Iq ∧ I ∩ Iq = ∂Iq, therefore f(∂Iq) ⊆ A ∩B = C)

(this is called (relative) homotopy class of maps of tetrads)

= [(Iq × I)/K; Iq × {1}, (∂Iq × I)/K, (Jq−1 × I)/K → X;B,A, ∗]
(K := Iq × {0} ∪ {i0} × I)

= [Iq+1; (Iq × {1}) ∪K, (∂Iq × I) ∪K, Jq−1 × I ∪K → X;B,A, ∗]

= [Iq+1; Iq × {1}, Iq−1 × {1} × I, Jq−1 × I ∪ Iq × {0} → X;B,A, ∗]
(notice that ∂Iq = ∂Iq−1 × I ∪ Iq−1 × {0, 1})

We can assume that (A,C) have no relative q < m-cells and (B,C) have no relative q < n-cells.
And we can assume that X has finite many cells since Iq is compact.
For subcomplexes C ⊆ A′ ⊆ A, where A = em ∪A′ (attaching one cell from A′).
Let X ′ := A′ ∪C B, if the results hold for (X ′;A′, B) and (X;A,X ′), then it hold for (X;A,B)
since we have map between exact homotopy sequences of triples (A,A′, C) and (X,X ′, B):

πq+1(A,A
′) πq(A

′, C) πq(A,C) πq(A,A
′) πq−1(A

′, C)

πq+1(X,X
′) πq(X

′, B) πq(X,B) πq(X,X
′) πq−1(X

′, B)

i2,q+1 i1,q−1i2,qi3,qi1,q

induced by inclusion (A,A′, C) ↪→ (X,X ′, B). If the result hold for (X ′;A′, B) and (X;A,X ′),
maps i1,q, i2,q are isomorphisms when 1 ≥ q ≥ m+ n− 3, are epimorphisms when q = m+ n− 2.
Notice the 5-lemma says that
if i1,q and i2,q are epimorphisms, i1,q−1 are monomorphism, then i3,q is epimorphism.
if i1,q and i2,q are monomorphisms, i2,q+1 are epimorphism, then i3,q is monomorphism.
We also have if C ⊆ B′ ⊆ B with B = B′ ∪ en, the result hold for CW-triads (X ′;A,B′) and
(X;X ′, B) where X ′ = A ∪C B′, since (A,C) ↪→ (X,B) factors as (A,C) ↪→ (X ′, B′) ↪→ (X,B).

Now we can assume that A = C ∪Dm and B = C ∪Dn.

The current goal of proof is to prove any

f : (Iq+1; Iq × {1}, Iq−1 × {1} × I, Jq−1 × I ∪ Iq × {0})→ (X;B,A, ∗)

is nullhomotopic for any q + 1 with 2 ≤ q + 1 ≤ m+ n− 2.

For a ∈
◦
Dm, b ∈

◦
Dn We have inclusions of based triads:

(A;A,A− {a}) ↪→ (X − {b};X − {b}, X − {a, b}) ↪→ (X;X − {b}, X − {a})←↩ (X;A,B)
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The first and the third induces isomorphisms on homotopy groups of triads since B is a strong
deformation retract of X − {a} in X and A is a strong deformation retract of X − {b} in X.
π∗(A;A,A− {a}) = 0 since π∗(A,A− {a})→ π∗(A,A ∩ (A− {a})) are isomorphisms.

Current goal : choose good a, b to show f regarded as a pointed traid map to (X;X −{b}, X−
{a}) is homotopic to a map

f ′ : (Iq+1; Iq−1 × {1} × I, Iq × {1}, Jq−1 × I ∪ Iq × {0})→ (X − {b};X − {b}, X − {a, b}, ∗)

if 2 ≤ q + 1 ≤ m+ n− 2.

Note. We want to homotopically remove some point f−1(b), first we may want to construct some
Uryssohn function u separating f−1(a)∪ Jq−1 × I ∪ Iq × {0} and f−1(b) and construct homotopy
of cube h+ : (r, s, t) 7→ (r, (1 − u(r, s)t)s) wishing that f(h+(r, s, 1)) would miss b. The problem
in this method is that points f−1(b) in the cube would be homotopically replaced by other points.
Since our desire homotopy does not change the first q coordinates of the cube, we want to separate
p−1(p(f−1(a))) ∪ Jq−1 × I and p−1(p(f−1(b))) (where p : Iq × I → Iq). Our problem is to find
suitable a, b such that p(f−1(a)) ∩ p(f−1(b)) = ∅.

We use manifold structure on Dm and Dn to achieve it, now we homotopically approximate f
by a map g which smooth on f−1(Dm

<1/2 ∪D
n
<1/2).

Let U<r := f−1(Dm
<r ∪ Dn

<r), Use smooth deformation theorem to construct smooth map
(for any 0 < ϵ) g′ : U<3/4 → Dm

<3/4 ∪ D
n
<3/4 with homotopy h1 : g′ ≃ f |U<3/4

(and bound

|g′(x) − f(x)| < ϵ for any x ∈ U<1) and take partition of unity {ρ, ρ′} with subcoordinates
{Iq+1 − U<1/2, U<3/4}, we have:

g := ρf + ρ′g′

h2 : g ≃ f rel (Iq+1 − U<3/4)

h2 : Iq+1 × I → X

(x, t) 7→ ρ(x)f(x) + ρ′(x)h1(x, t)

with scalar multiplication and addition is already defined on smooth structure on Dm
<3/4 ∪D

n
<3/4.

We could assmue that g(Iq−1 × {1} × I) ∩ Dn
<1/2 = ∅ (which implies g is a map of tetrads

to (X;X − {b}, X − {a}, ∗)) and g(Iq × {1}) ∩ Dm
<1/2 = ∅ since f(Iq−1 × {1} × I) ⊆ A and

f(Iq × {1}) ⊆ B and we can always tighten the bound ϵ, (Similar argument also hold for h2, then
we have h2 : g ≃ f as homotopy between maps of tetrads.)

Use the manifold structure to find good (a, b):
V := g−1(Dm

<1/2)× g
−1(Dn

<1/2) is a sub-manifold of I2(q+1). Consider W := {(v, v′) ∈ V | p(v) =
p(v′)}, which is the zero set of smooth submersion (v, v′) 7→ p(v) − p(v′). W is smooth manifold
with codimension q. Therefore the map (g, g) : W → Dm

<1/2 × Dn
<1/2 is smooth map between

manifolds of dimension q+ 2 and m+ n. The map is not surjection since q+ 2 < m+ n. Then we
have (a, b) /∈ (g, g)(W ) (that is, p(g−1(a)) ∩ p(g−1(b))).

Since g(Iq−1×{1}×I)∩Dn
<1/2 = ∅ and g(Jq−1×I)∩Dn

<1/2 = ∅, we have g(∂Iq×I)∩Dn
<1/2 = ∅.

By Uryssohn’s lemma, we have u : Iq → I separating p(g−1(a)) ∪ ∂Iq and p(g−1(b)). Finally we
have:

h′ : Iq × I × I → Iq × I
(r, s, t) 7→ (r, (1− u(r)t)s)

and h := g ◦ h′, f ′ := h(−, 1). f ′(Iq+1) ∩ {b} = ∅ since if ∃(r, s) ∈ Iq × I, f ′(r, s) = b, then
b = g(r, (1− u(r))s) = g(r, 0) = ∗ leads to contradiction.
Last step is to check that h is a homotopy between maps

(Iq+1; Iq−1 × {1} × I, Iq × {1}, Jq−1 × I ∪ Iq × {0})→ (X;X − {b}, X − {a}, ∗)
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Since g is, g ◦ h′ is too.
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