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Definition 0.1. A CW-complex is a space constructed by successively attaching cells:

For n € N,n > 0, there are maps {p; : S"~1 — X"~1},.; (called characteristic maps). The way
to construct X™ (called n-skeleton of X) is :

(starting from X ~! = (), if we start from X ! = A, we say (X, A) is a relative CW-complex)

H'g] Pi
ey, 57 e

J J (pushout)

Hier, P" ——— X"

and the resulting CW-complex X is lig{XO — - — X" — X"t — ...} The images of D! in
X is called open cell e} of X.

Definition 0.2. A is a subcomplex of CW-complex X iff for any open cell e’ of X, A satisfy:
ANnel #0 = € C A
Pair of X and subcomplex A : (X, A) is called a CW-pair.

Definition 0.3. The Infinite Symmetric Product of a pointed space (X, z¢) is colimit of its n-th
Symmetric Products ( SP™ X := (T[jo1, n_13 X)/Sn ) :

h_n>q{--~c—>SP”Xr—>SP"+1Xe—>-.-}
{56‘1,...,.7}”}’—>{$C0,.T17...,:L‘n}

Definition 0.4. For n > 1, a map between pairs f : (X, A) — (Y, B) is an n-equivalence if:
° f*_l(Im(ﬂ'oB — WUY)) = Im(ﬁoA — 7TOX)
e For all choices of basepoint a in A,

f* : ﬂ-q(XvAaa) — Wq(}/v vi(a’))
is isomorphism for 1 < ¢ < n — 1 and epimorphism for ¢ = n.

Definition 0.5. A pair (X, A) of topological spaces is n-connected if wo(A) — 7o (X) is surjection
and my(X,A) =0for 1 <g < n.

Definition 0.6. For topological spaces A — X, A is a strong deformation retract of a neigh-
borhood V in X if:

Jh:V x I — X such that

Ve eV, h(z,0) =z

h(V,1) C A

Y(a,t) € Ax I, h(a,t)=a

Definition 0.7. For topological spaces i : A — X, A is a deformation retract of X if:
Jh : X x I — X such that

Ve e X, h(z,0) ==

h(X,1)=A

Y(a,t) € Ax I, h(a,t)=a

(That is, there are retraction r : X — A and homotopy h : idx ~iorrel A)

And r := h(—,1) is called a deformation retraction.

Definition 0.8. For topological spaces A — X, a neighborhood V of A is deformable to A if:
Jh: X x I — X such that

Ve e X, h(z,0) =2z

h(AxI)CA h(V xI)CV.

h(V,1) C A



Definition 0.9. For a topological group G, a relative G-(equivariant) CW-complex (X, A)
is a space constructed by successively attaching G-equivariant cells G/H x D" on a G-space A:
For n € N,n > 0, there are maps {p; : G/H; x S"~t — X"71},.; (called characteristic maps)
where each Hj is closed subgroup of G and G acts trivially on D", S~ !. The way to construct
X" (called n-skeleton of X) is:

(starting from X ! = A where A is an G-space)

ier, #i
—=n

[ier, (G/Hi x Sty Xxn-t

|

HieIn(G/Hi x D")

j (pushout in category of G-spaces)
Hieln B xn

The resulting X is lig{X_1 - X%— -5 X" — X"t — ...} The images of G/H; x D' in X
is called open n-cell of type G/H;. ¢; is called the attaching map and ¢;(G/H; x S"~1) is called
the boundary of ¢;(G/H; x D™). If A =0, then X is called a G-(equivariant) CW-complex.

A criterion of weak homotopy equivalence:
Lemma 0.1. The following on a map e : Y — Z and any fired n € N are equivalent:
1. Foranyy €Y , e.:my(Y,y) = m4(Z,e(y)) is monomorphism for ¢ = n and is epimorphism
forg=mn+1.
2. (HELP of (D"*',S™)) Given maps f : D"*' — Z, g : 8™ =Y and homotopy h : foi ~ eog:
Sn < ( pntl
gJ / Jf
Y ——— 7
then we have extension gt : D"™1 =Y of g and h™ : f ~eogt:
S < Dn+1
4
Y ——— 7
3. Conclusion above holds when the given h is idyo;.
Proof. Trivially 2. implies 3.
Our first goal : 3. implies 1.
Fix n € N. m,(e) is monomorphism:
For n = 0, 3. says if we have path e(y) ~ e(y’) then we have path y ~ ¢/.That is to say e can not
map two path-connected component to one.
For n > 0, 3. says if e o ¢ is nullhomotopic, then g : S — Y could be extend to g* : D" = Y,
which can be used to construct nullhomotopy of g.
Fix n € N. m,41(e) is epimorphism:
For [f] € mni1(Z,e(y)) = [D"HL, 5™ Z, e(y)], let g := s + y, the extension gT satisfy e.([g7]) =

[f], that proves e, is epimorphism.

Second goal : 1. implies 2.



Fix g, f,h in the condition of 2. first. And observe that m,(Y,y) = [S™, *; Y, y|, mn+1(Y,y) =
[D™H, 8™ Y, y).
There is a map f': (D"*!,8") — Z homotopic to f defined by f’ = f o b(—,1) where

b:CS" xI—CS"

@.e) {(x,l—%) t<s
T,0),8) = 8T 1—s/2. s
(x’i—séé) tZ§

(recall that D"t ~ CS™) Therefore we can replace f with f’. Using the epimorphism leads to
W :eogt ~ f' using the monomorphism leads to r : g™ o ~ g. Construct g+ := a(—,1) using

a:C8"xI—=Z
{r(a:,s—Qt) t <

S
2
/ t—s/2
gt'(@, =22 t>

((z,1),5) =

3
And that is the end of the proof:

Sn Dn+1

N e ls
=

Y —mmm— 7

Theorem 1.1. Homotopy Extension and Lifting property:

A : a topological space

X : result of successively attaching cells on A of dimensions 0,1,... k (k<n)
e:Y — Z : n-equivalence

g A=Y, f: X —>Z

hiflazeog

X

~

Ae——
gJ %
Y ——

Z

Then there exists g© : X — Y extends g (gF|a=g)
and h* : X x I — Z extends h, h* : f ~eog™

A—— X

1zl

Yy — %2z

Proof. It suffices to prove the case A = S*~1, X = D¥ | ¢ is inclusion. (replace Z by M.) Apply
HEP of (D*, S¥=1):



f = h(—,1), replace f with f’ the diagram would be strictly commute. Therefore, f’ is map of
pairs (D*, S*~1) — (Z,Y), k < n implies f’ is nullhomotopic, suppose h* : D¥ x I — Z is the
nullhomotopy, then g* := h*(—, 1) satisfy g*(D¥) C Y.

]

Note. In HELP, at condition Y = Z and e = id, HELP says (X, A) have HEP

Corollary 1.2. If

A : a topological space

X : result of successively attaching cells on A of any dimensions
Then, (X, A) have HEP.

Theorem 1.3. If X is an CW-complex, e : Y — Z is an n-equivalence, Then e, : [X,Y] — [X, Z]
is a bijection if dim X < n, and a surjection if dim X = n.(Also valid for pointed case)

Proof. Surjectivity:
Apply HELP of (X,0) ((X, o) for pointed case) to obtain e,[gT] ~ [f]:

— X

7]

Z

€

Injectivity (dim X < n):

Suppose [go], [g1] € [X, Y], ex[g0] = ex[g1].
Let f:eogg~eogy Apply HELP to (X x I, X x 9I):

X x0I —— X x1
QJ( / Jf
Y ———— 7
O]
Corollary 1.4. If X is a CW-complex, e : Y — Z is weak homotopy equivalence, then e, :
[X,Y] — [X, Z] is bijection.
1.1 CW-approximation
This subsection shows that CW-complexes encode all weak-homotopy types of TOP.

Definition 1.1. A CW-approximation of (X, 4) € Top(2) is a CW-pair (X, A) and a weak
homotopy equivalence of pairs ¢ : (X, 4) — (X, A).
Theorem 1.5. (Ezistence of CW-approzimation) If X is path-connected pointed space (0-connected),

then there is a CW-approzimation ()?, *) 2, (X, ). If X is n-connected then X could be chosen
to satisfy X™ = x. (Moreover, each characteristic map of X is pointed)



Proof. If X is n-connected, then ¢, : Y™ := x* — X is n-equivariance. Assmue inductively that we
already have m-equivalence Y™ Pmy X (m > n), Our goal is construct Y™ and ¢, 41 : Y —
X.
Let

.f’r_‘: : @Za = ker((bm*) - 7'rm(}/m)

acA

be a free resolution of ker(¢n+) (I c4 Zq if m = 1), and obtain a (unique up to homotopy) map
S i Vgea Sit — Y™ defined by f|sm := kq where [k,] = ff(1a) € [S™,Y™].. We have: (since

acAa
[¢m © fm] = 0)
m fm -
\/aGA Sa Y Cfm
N i‘/’erl
X

Cy,. is a CW-complex with dim = n + 1 with m-skeleton Y™. @14 @ T (Cy,,) = T (X) is
isomorphism, but @m+14 : Tm+1(CY,,) = Tm+1(X) is not necessarily an epimorphism.
Define the set B := Tpt1(X) — @m+14(Tm+1(Cy,,.)) and Y™+ = Cp v (Ve p S TH).
Define ¢™*! by ¢™ ¢, = @i and ¢m+1\sgn+1 := 13, where [rp] = b € [S™HL X],.
Xi=lim {Y0 - ymoym™la. .} and ¢ =lim énm
If X is not path-connected, construct CW-approximatiorﬁor each path-connected component.
O

Note. The proof of existence of CW-approximation uses homotopy excision theorem| (CW-triad
version). Proof of CW-traid version does not need CW-approximation. There is no circular
argument.

Proposition 1.6. For any pair (X, A), there exists CW-approximation ¢ : ()Z',g) = (X, A).

Proof. Construct ¢4 : A — A first and use analogue method in proof of theorem |1.5| with
Y0.= A O

Lemma 1.7. ¢,9 are CW-approximations of X,Y, f: X =Y, then

X 43X

3

<

f

|

|

|
~

~

— Y

commutes up to homotopy, and f s unique up to homotopy.
Proof. Directly from 1, : [)N(,)N/] — [)N(,Y] is bijection. O
Theorem 1.8. ¢, 9 are CW-approzimations of (X, A),(Y,B), f: (X, A) = (Y, B), then

,A) —— (X, A)

af kf

(Y,B) — (Y, B)

=

commutes up to homotopy, and f s unique up to homotopy.



Proof. Apply Lemma to obtain map fA :A— B and homotopy h : ¥|5 o fA ~ fop|z Use
HELP of (X, A) to extend it:

A—— X

fa

Y — Y
1, is bijection implies the uniqueness up to homotopy of f O]

Theorem 1.9. (Whitehead’s Theorem)
Every n-equivalence between CW-complexes whose dimension is lower than n, is homotopy equiv-
alence. Fvery weak homotopy equivalence between CW-complexes is homotopy equivalence.

Proof. e : Y — Z induce bijections [Y,Y] — [V, Z] and [Z,Y] — [Z, Z], [f] = e;'[idz] implies
leo f] = [idz] and [eo foe] =[] ([f oe] = e, [e] = [idy]). .

Corollary 1.10. CW-approzimation is unique up to homotopy.

Example 1.1. Polish circle (Warsaw circle) : closed topologist’s sine curve. It is n-connected
forall n but not contractible.

Definition 1.2. A cellular map between CW-pairs is g : (X, A) — (Y, B) such that g(AU X™) C
BUY™.

Theorem 1.11. For any map between CW-pairs f : (X, A) — (Y, B) there exists a cellular map
g such that g ~ frel A

Proof. Construct g inductively:

Start from A U X°:

take paths v; : f(z;) =~ y;, where y; is any point in Y° and x; € X° — A.

Construct ho : (X°UA) x I =Y : hgla(a,t) := f(a), ho|xo_a(xi,t) :=~;(t). This is a homotopy
from f to go := ho(—,1) : AUX? - BUY?

Inductive step:

Assume g, : AU X" — BUY"™ and homotopy hy, : flauxr =~ g, is given, try to construct g,41:
For each characteristic map ¢; : S™ — X", take the resulting cell map ¢; : D"*! — X"+l and
use HELP of (D"*1, S7):

7 < Dn+1

Glue all gy4+1,; and hp41,; to produce gp41 and hpt1 2 flauxn+t =~ gnti-

Final stage:

Maps g, determine a cellular map g : X — Y since X has the final topology determined by
skeletons. O

Corollary 1.12. If X is a pointed CW-complex, then the inclusions X"t — X"+2 sy ... s X
induce T, (X"H) 2 1, (X)) = ... 2 1, (X).



Proof. For k > 1, X"*t* < X7+F+1 induces epimorphism 7, (X"*) — 7, (X" F+1)

since every f : (S™, %) — (X"F*+1 ) is homotopic (rel ) to an g : (S™, %) — (X", %) < (X"+F x).
Now we want to prove it is monomorphism, that is, i.[f] =0 = [f] =0

If h: (8™ %) x I — X"tF+1 s a nullhomotopy in X"Hk+1

of amap f:(S", %) — (X"FTF x) s (XHEHL &),

then h : (CS™, S™) — (X" HF+L X7+k) is homotopic (rel S™) to an A’ : (CS™, S™) — (X HE Xntk)
which is equivalent to A’ : S™ x I — X"k with h(S™, 1) = x, h(x,t) = *, hlgnx (0} = f.

O

Lemma 1.13. If (X, A) is CW-pair and all cells of X — A have dim > n, then (X,A) is n-
connected.

Proof. For each ¢ < n, and each [f] € m4(X, A), f ~ grel S9! where g is an cellular map. (use
theorem [1.11)) 7, (X, A) 3 [g] = 0 since g(S" "t Ue™) = g(D") C AU X" = A.
O]

1.2 Operation of CW-complexes

We show that Product, Smash Product of CW-complexes and Quotient of CW-pairs (with
compact-open topology) are CW-complexes. (Compact-open topology is the right topology on
CW-complexes)

Product of CW-complexes:

Example 1.2. Product topology of two CW-complexes does not coincide with the final topology
(union topology):

X (star of countably many edges) : X = X' =\/, . I,

Y (star of w* many edges) : ¥ =Y! = Viewe Ir ((In,0) = (If,0) = (1,0) )

Consider subset H of X x Y: H := {(f(n1)+1, f(n)+1) €L, xIf|new,few}

H is closed under the final topology since every cell of X X Y contains at most one point of H.

But closure of H contains (0,0) at product topology:
Let U x V be an open neighborhood (at product topology) of (0,0), let g : w — w — 0 be an
increasing function such that forall n € w,[0, ﬁ) C U N1, let k € omega be sufficiently large

that C VNl then (-7 eUxVNH.

g(k)+1 g(k)+1’ g(k) +1)

Proposition 1.14. X and Y are CW-complexes, X x Y is CW-complex if
X orY is locally compact

or

both X andY have countably many cells.

Another way to realize X x Y as CW-complex is to change its topology to the compactly
generated topology k(X x Y):

Definition 1.3. For subspace A of X, A is compactly closed if
V compact space K
V continuous g : K — X
g (A) is closed in K
Definition 1.4. X is k-space if any compactly closed subset is closed.
Definition 1.5. X is weak Hausdorff if
V compact space K

V continuous g : K — X
g(K) is closed in K

Definition 1.6. The k-ification of a space X is defined by: k(X) := (X, 1)
where 7 = {X — A | A is compactly closed set}



Definition 1.7. X is compactly generated space if it is k-space and weak Hausdorff.
Note. If X is weak Hausdorff, then A C X is compactly closed iff

YV compact subspace K C X
AN K is closed in X
If X is a CW-complex, then the topology defined on k(X) automatically coincide with the final
topology induced by its CW-complex structure. We have CW-complex structure of k(X x Y) is
given by:
I x IMUI™" x 0I™ ——— X" I xymuXn xym!

J |

" x Im Xt xym

Furthermore, the k-ification is right adjoint of the inclusion functor i:

i
TOPCptGen (/T)TopweakHaus
o
This allows us to define the CW-complex structure on any limit of CW-complexes: I'&Hi X; ~
Jim, k(X;) = k:(lglz X;) (X = k(X) and right adjoint preserve limits).
Note. Category of CW-complexes is not cartesian closed, but category of compactly generated
spaces TOPcg is. And its pointed version TOPE/G have based exponential law: Hom(X AY, Z) ~
Hom(X, Hom(Y, Z2)).
Quotient of CW-pair:

Proposition 1.15. For CW-complex X and subcomplex A, the Quotient space X/A have a CW-
complex structure induced by X and A.

Proof. Suppose the characteristic maps of X are indexed by {I,},cn and of A are indexed by
{Il }nen (I}, € I,). Then the characteristic maps of X/A are indexed by { K, }nen, which defined
below:

Ky := (Ip — I})) U {ip} where i is an arbitrary element in I},

K, =1, — I forn > 0.

Verify the maps determine the CW-complex structure:

Snfl anl anl/Anfl

|l

DTL

O
Smash product of CW-complexes:

Proposition 1.16. If (X,x0) , (Y,yo) are pointed CW-complexes with both countably many cell,
and X"t = {zo}, Y*°! = {yo}, then X AY = X xY/X VY is an (r + s — 1)-connected
CW-complez.

Proof. X x Y is CW-complex with cells of the form e} v x {yo}, {zo} x €7 or €f'x x €7y for
n >r, m > s. Cells of the first two forms are contianed in X VY, therefore (X AY) ™71 =x. O

Corollary 1.17. If X is a pointed CW-complex, then X" X is an (n — 1)-connected CW-complex.



1.3 Properties of Infinite Symmetric Product

Functoriality:

Pointed map f: X — Y induces
fn :SP"X — SP"Y
{ze, e} = {f(@1),. ., fan)}

— — SP"X —— SP"T'Xx ——

Lfn an#»l

—— SP"Y —— SP"*'y —

Which induces map SP f : SPX — SPY. And Functorial properties are directly from the
constructions above.

SP(X; V X5) = SP(X;) x SP(X3), the homeomorphism is given by:
({a'lv CLQ, o 7ak}a {b17 b27 o 7bm}) = {ala CLQ, o 70’]67 b17b23 o aan}

Commute with directed colimit:
Suppose P is a directed poset (that is Va,y € P, 3z € P, x < z,y < z) and X; are pointed spaces
indexed by P satisfying i < j = X; C Xj.
Then SP"(li_n}i X;) = li_n)qi(SP” Xi)
(Proof is obtained by showing that SP™ f is continuous iff f is, which implies final topology on
@i(SP” X,) agree on SP"(ILni Xi))

Suppose i : A — X is an pointed inclusion, then SPi : SP A — SP X is also inclusion. Fur-
thermore, if A is open (or closed) in X, then SP A is open (or closed) in SP X.

CW-complex structure of SP:
We can have natural CW-complex structure on [[, X by applying k(—). following theorems
allows us to prove that SP" X =[] X/S,, have a CW-complex structure.
Definition 1.8. G acts cellularly on a CW-complex X if:
Vg € G, e} is open n-cell (of X)
g(ei') = e} is open n-cell (of X)
and g(e}') = e} implies glen = iden.

Lemma 1.18. If G is a discrete group, X is CW-complex with G cellularly act on X. Then X is
a G-CW-complex with n-skeleton X™.

Proof. The goal is to show X™ is obtained from X"~! by attaching G-equivariant cells. Since

[lic;, Y = I, x Y (I, with discrete topology). We have:

I, x §n~t —2— Xl

[ ]

I x D" ——— X"

G acts cellularly on open n-cells implies G acts on I,,. Decomposite I,, into disjoint unions of obrits
[{aca I choose G-isomorphisms

G/H, =1,
gHo = gig

10



And we have a well-defined G-map.

dalen : G/Hy x " 21, x e — X"
(9Ha, ) = (gia, T) = bgio () = 95, (7)

o
Since we have e = D™, we obtain the following (by continuity):

¢o : G/Hy x D" — X"
(9Ha, ) = 9o, (2)
g1 = Qo : G/Hy x S™1 — X1
(9Ha, ) > gpi,(3)

Pa

Let " :=[[,ca Pa and ¢’ := ], c 4 ¢ we have:

[Loea(G/Hy x 71y —£5 xn-1

J |

HaeA(G/Ha x D™) T X"

Verify it is indeed a pushout of G-spaces: f* (is already determined uniquely as map between
G-sets) is map between G-spaces.
Since X have compactly generated topology, f* is continuous on each compact subspace of X
implies f1 is continuous on each compactly closed subspace of X", which implies f* is continuous
on total X™.
fT is continuous on each closed n-cell {gH,} x D™ and f* is continuous on X"~! implies f* is
continuous on each compact subspace. (since each compact subspace intersect finitely with n-cells
and X"~ ! (We use X™ is T to construct open cover))

O

Theorem 1.19. For any topological group morphism ¢ : H — G we have induced functors:
pullback action:

G-TOP ¥ H-TOP
(a(—,—):Gx X = X)— (a(éd(—),—) : Hx X = X)
(fX=>Y)—(f: X=>Y)

induced action:

H-TOP £*2=, G_TOP
X+— Gxg X :=(GxX)/[ (gp(h),x) ~ (g,hx) | h € H
(f:X=>Y)— (degxgf:Gxg X —>GxgY)
Which are adjunctions:
=
H-TOP S G-TOP
pr

Proof. By G-equivariance, f is determined uniquely by its restriction f|4(m)x, x. And f:X—

11



¢*(Y) uniquely determine a map ¢(H) xg X — Y.

(Gxy X ! Y) — s (X = ¢(H) xug X —HxmX vy
W W W w
(99(h),2) ———— go(h)f(z) (¢(h),x) = (e, hx) —“ﬁ ¢(h)x
X ! (V)
Naturality:
(G xpX —Hexu1l’ L guax 5 Y i Y')
W \ w w

(9, ha') ———— (9, hf"(2)) ——— go(W)f(f'(z)) —— go(h) f"(f(f'(2)))

)

o"(f")

! R gr(v) — s 1)

X — 1 X —(H)xu X
w W w W
(ha') ——— (¢(h), f'(z")) = (e, hf'(2")) ——— ¢(M) f(f'(x)) —— o(R)f"(f(f'(2)))

O

Proposition 1.20. If (X, A) is relative G-equivariant CW-complex, then (X/G, A/G) is relative
CW-complex with n-skeleton X™/G.

Proof.
Hieln Sn—l Xn—l/G

[ ]

Hieln D — X"/G

Is still pushout since —/G = 1 X —, and left adjoint preserves colimits.
O

Since k([[,, X) have CW-complex structure, and S, (as a discrete group) acts cellularly on
it, k(I],, X) is an S,-equivariant CW-complex. Therefore SP" X = k(]],, X)/S™ is CW-complex.
Since SP X = @{Sfﬂ X <. < SP"X — SP"" X — ...}, SP X is also a CW-complex.

Pointed homotopy h : X x I — Y induces

hp :SP" X x I — SP"Y
{1,z by t) = {h(z1,1), ..., h(@n, )}

12



which induces SPh: SPX x I — SPY.

Then we observe:
f ~ ¢ implies SP f ~ SP ¢,
e: X — Y is homotopy equivalence implies SPe : SP X — SPY is,
X is contractible implies SP™ X and then SP X is.

Theorem 1.21. (Dold-Thom Theorem)

If X is Ty space and A is closed path-connected subspace of X, and there is neighborhood V
to A in X.

Then the quotient map q : X — X/A induces quasi-fibration SPq : SP X — SP(X/A), which
satisfy Vo € SP(X/A), (SPq)*{x} ~ SP A.

Proof. See [here

Corollary 1.22. If X , Y are Ty spaces and Y is connected, f : X — Y. Then consider
X =Y = Cf — XX, the map p: Cy — XX induces quasi-fibration SP p : SP Cy — SP(XX) with
fiber SPY.

2

Corollary 1.23. If X is Ty and path-connected, then for any g > 0, there is mq4+1(SP(XX))
T (SP X).

Proof. CX is contractible implies SP CX is contractible, use the exat homotopy sequence of
quasi-fibration to see:

o

— 5 71(SPCX) —— 7 1(SPEX) —— 1,(SP X) — 7 (SPCX) ——

17}
O
Note. The inverse of the isomorphism 0 above is given by
[S9,SP X] 3 [g] — [Zg] € [ST, X SP X]
(S SP X = SP £X). Because 9 is given by:
Tg(SPYXX) —— m,(SPCX,SP X) —— 7,1 (SP X)
w w w
1] /] [flsa-1]
[po Cy] = [%g] «——— [Cy] ' [g]
O

Corollary 1.24. If X is T space and A is path-connected subspace of X, then the canonical map
SP(X U (A xI)) — SP(XUCA) is a quasi-fibration with fiber SP A.

Theorem 1.25. If X is 15 space and A is path-connected subspace of X, and A — X is a
cofibration.

Then the quotient map q : X — X/A induces quasi-fibration SPq : SP X — SP(X/A), which
satisfy Vo € SP(X/A), (SPq){x} ~ SP A.

Proof. If A — X is cofibration, then X UCA ~ X/A and X U (A x I) ~ X. O

=y

Proposition 1.26. The inclusion S* — SPS! is homotopy equivalence, therefore m,(S')
m,(SPSY).
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Proof. S' ~ S? — {0, 0}

SP" 5% = {{a1,...,a,} | a; € CU{o0}} = {I1{a,,....any (27— ai) | a; € CU{oo}} where (z—00) :=1
SP" 52 = {f € C[z] — {0} | deg(f) < n} = CP"

SP" (5% —{0,00}) = {f € C[z]—{0} | deg(f) < n, fo #0, fo # 0} = C"~C" "' x0 = C""'x(C~0)
it have the same homotopy type of S*

Corollary 1.27. m,(SP S") = Z if ¢ = n, otherwise m4(SP S™) = 0. (use corollary of|1.21| to see
Te+1(SPEX) =2 7, (SP X))

2.1 Reduced Homology Groups
Definition 2.1. For a path-connected pointed CW-complex X, define its n-th reduced homol-
ogy group for n > 0:

H,(X) := m,(SP X)

Note. All reduced homology groups are abelian since H,(X) 2 H,,1(XX). Thus, we can extend
the definition above to those X which does not necessarily be path-connected.

As SP, H,, also satisfy functoriality. Furthermore, H,, maps homotopic maps f =~ g to identical
maps fx = g«. (SP maps homotopic maps to homotopic maps)

Exact Property:

Proposition 2.1. For any pointed map between CW-complexes f : X — Y, we have an exact
sequence:

Hy(X) 25 Ha(Y) £ Ha(Cy)
where C is the mapping cone of f, 1:Y — Cj.

Proof. Z; :=Y Uy (X x I)/{zo} x I is the reduced mapping cylinder of f.
q: Zy — Cy is defined by

Y=y
—z —cC
(z,t) T (@,0) 7
By [Dold-Thom theorem| the induced map SP ¢ is quasi-fibration SP Z; — SP C'y with fiber SP X.
By definition of quasi-fibration, we have

T(SP X) 22 H,(X) L5 7, (SP Z4) = Ho(Y) 2 7, (SP Cy) = Ho(C)

O
Proposition 2.2. There does not exist retraction r : D™ — ™1,
Proof. id=1ro04:S" ! = D" — S"! induces
ide =100y i 22 Hy 1S"' = H, D" 20— H, S" ' 2Z
which lead to contradiction. O

Theorem 2.3. Fiz-point theorem:
If f : D™ — D" is continuous, then exist xg € D™ such that xo = f(xg).

Proof. (non-constructive) No such zy implies Vo € D", f(x) # x therefore, we can construct
continuous retraction r : D™ — S~ ! by
r(x):= the intersection of “ray starting from f(z) to 2” and S"~!. Contradict to

14



Definition 2.2. Let (X, A) be an CW-pair, define the n-th homology group for n € N of (X, A)
be:

H,(X,A):=H,(XUCA)
And for single space:

H,(X):=H,(X,0)=H(X +1)
where X + 1 := X LI *.

Note. Map between CW-pair f : (X, 4) — (Y, B), induces map f:XUCA — Y UCB defined by
(z,t) — (f(x),t), which induces f, : H,(X UCA) — H,(Y UCB) for any n € N.

2.2 Axioms for Homology

Definition 2.3. A (Ordinary) Homology Theory (on TOP with coefficient G € Ab) is functors
(H,(—,—:G) : TOP(2) — Ab}ncz,

with natural transformations 0, (x 4y : Hn(X, 4;G) = H,—1(A,0;G) (called connecting homo-
morphism)

satisfying following axioms:

e Dimension:
Hy(+,0;G) = G, for any n# 0, Hy(x,6;G) = 0.

¢ Weak Equivalence:
Weak equivalence f : (X, A) — (Y, B) induces isomorphism

fvt Ho(X,A;G) = H.(Y, B; G)

e Long Exact Sequence:
For any (X, A) € TOP(2), maps A — X and (X,0) — (X, A) induce a long exact sequence
together with 0:

o= Hy 1 (AG) = He1(XGG) = He1 (X, A;G) = Hy(AG) — -+
where H,(X;G) := H,(X,0; G).

o Additivity:
If (X,A) =]],(Xx, Ax) in TOP(2), then inclusions iy : (X, A)) = (X, A) induces isomor-
phism
(D ivn) : P Ho(Xx, 45G) = Ho(X, 4;G)
A

e Excision: 0 .
If (X; A, B) is an excisive triad (that is, X = AU B), then inclusion (4, AN B) — (X, B)
induces isomorphism

H.(A,ANB;G) = H,(X,B;G)

Note. An equivalent form of Excision Axiom:
If (X,A) € TOP(2), U is subspace of A and U C A, then inclusion i : (X — U, A —U) — (X, A4)

induces isomorphism

iv : H(X —UA—-U;G) = H.(X, A;G)

There is a critical criterion about weak homotopy equivalence between excisive triads, we prove
lemmas first:

15



Lemma 2.4. For

if D is deformation retract of X and Z C D C X, then DUz Y is deformation retract of X Uz Y .

Proof. Let h :idxy ~ r o4 where r is the deformation retraction X — D. Define h, : idxy,y =~
(i Uz ldy) o (T’ Uz ldy)
h*Z(XUZY)XI%XUZY
(2,t) = fu(h(z,1))
(y,t) = ix(y)

Observe that (X Uz Y) x I = (X x I)Uzx (Y x I), check that h* is continuous:

Zx] — Y xI

| e

XXxI —— (XUzY) X

S

X4>XUZY

O

Lemma 2.5. For maps i : C — A, j : C — B define the double mapping cylinder M(i,j) :=
AUcxgoy C x I Ucxqy B. If i is closed cofibration, then the quotient map

q:M(i,j) = AUc B
ar—a
b—b

(¢, t) — ¢

is a homotopy equivalence.

Proof.
¢Cc —— B

|

The canonical quotient r : M;, — A Uc B is a deformation retraction with homotopy:

h:(BUCXQ(AXI))XI—)BUCX()(AXI)ZMZ‘A
(a,t,8) = (a,(1—s)t)
(b,s) — b

Observe that C x I Uc A x {1} is a deformation retract of A x I, since i : C — A is closed
cofibration.
Then we have M (4, j) = BUcx {0} (CxIUcx {13 Ax{1}) is a deformation retract of BUcy (o} AXI =
M;,. (use lemma [2.4)
Finally, an easy check shows that M(i,j) — M;, -+ AU¢ B is identical to q.

]
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Theorem 2.6. For excisive triads (X; X1, Xs), (X'; X1, X}) and map e : X — X', if
E‘Xl g X1 — X{
6‘){2 : Xo — Xé
G‘XS : X3 — Xé

are weak equivalences, (where Xz := X1 N Xo, X4 := X N X)) then e is.

Proof. Use an important of weak homotopy equivalence, it suffices to show forall n € N,
any commutative diagram below:

Sn < i pntl

can be filled like:

whose upper triangle commutes.

Let
Ay =g Y (X — Xp) U (X — XT)
Agi= g7 (X — Xa) U fH(X! — X2)

which are disjoint closed subsets of D"*1. Choose CW-complex structure on D"*! such that for
each n-cell o;, a; N (A1 U A2) = 7; N Ay or 5; N As. Now define

Ky = |J@i | 9(@in 5 € X2 and f(0) € X1} = (a7 | 70 A1 = 0)

Ky :=| J{zi | g(@ins™) C X, and f(77) € )?é} =@ |7in 4, =0}

which are subcomplexes of D"*! and satisfy K; U Ky = D"t!. By we have:
S"N K NKy —— K; N K

go
g|Kan2J( J{fh(lmkz
4/h0

X1 OXQ ErE— X{ﬂXé

€|X1mX2

such that hg is f|x,nK, >~ eogorel (S™ N K1 N K»). Apply HELP to:

(SnUK]_)mKQLKQ (SnUKg)ﬂKl L)Kl
QKQJ o JﬂKQ 9K1J . Jﬂxl
2 1
Xy —— Xé X — X{

where

gk, are defined by gk, |srnk, = glsnnk, and gk,
hk, are defined by (hg, is similar):

hic, : (S" UKy NEK) x I — X},

e(g(z)) ze€S"NK,
(1'7t) ~ {h()({,&t) x € KiNKsy

KiNKs = 907
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We get:

(SnUKl)mK24>K2 (S"UK2)0K1*>K1
ngJ 2 Jsz gKlJ e J
— —
Xog —— Xé X — X{
E‘X2 elxl

Define g% and h : f ~ grel S™ by g"|k, := g; and h|k,x1 := hi.

hlsnxr = (eog) xidy (h is rel S™) since h;(—,t)|srnk; = bk, (—, 1)

SrnK; — €0 9|S"nK

O

Note. The proof above can be easily modified to case each weak equivalence appear in the state-
ment is an n-equivalence.

Following theorem allow us to use CW-triads to approximate excisive triads:

Theorem 2.7. For any excisive triad (X; A, B), there is a CW-triad (X; A, B) (A CW-triad
(X; A, B) is X and its subcomplex A, B such that AUB = X ) and a map r : X — X such that

r\~:/~1%A
T|~:§*>B
rls:C—C

r:X 5 X

are all weak homotopy equivalences (where C:=A4n é, C := AN B). Furthermore, such r is
natural up to homotopy.

Proof. Choose a CW-approximation r¢ : C — C and extend it to TA A — A, rp: B — B.
X:=A Ua B.i:C — Aand j : C — B are closed cofibrations, by lemma 5[ we have homotopy

equlvalence q:M(i,j) — X , which induces homotopy equivalence of triads:

q:M(,j) > X

q|;ﬁu(6x[o,§))%ﬁ

q|:§U(5x(%,1])—>B

then we can deduce that r o ¢ is a weak homotopy equivalence by theorem Consquently, r is
weak homotopy equivalence. r is natural up to homotopy since each CW-approximation r¢, 74,75
is.

O

Then we have:

Definition 2.4. A (Ordinary) Homology Theory on CW-complexes with coefficient G € Ab is
functors {H,(—, —; G) : CW-pairs — Ab},cz,
with natural transformations 9, x4y : Hn(X, A;G) — H,(A,0; G) (called connecting homomor-
phism)
satisfying with the excision axiom changed to:
e Excision:
If (X;A,B) is an CW-triad (that is X = AU B for subcomplexes A and B) then the inclusion
(A,AN B) — (X, B) induces isomorphism

H,(A,ANB;G) = H,(X, B;G)

18



Proposition 2.8. The homology groups defined in deﬁnition with H_,(X) := 0 is a ordinary
homology theory on CW-complexes with coefficient Z.

Proof.

Z q=0

e Dimension: by |a corollary} H,(x,0) = m,(SP S°) =
0 g>1

Weak Equivalence: SP preserves weak equivalence.

Long Exact Sequence: use a of Dold-Thom theorem.

Additivity: For index set A, P:={S | S C A}.

Then define Ys := \/,cg Xa UCA\ = ([T cg X2) UC([xcs AN,

and use fact that [SP commutes with directed colimit] we have

Viea SP(XAUCAy) = @SeP SPYs ~ SP(li_n}SE]D Ys) = SP((Ixea Xa) U C(I1xen 4A0)) =
SP(X UCA).

Which induces @,y Hn(Xx U CAN) = m,(Vyep SP(Xa U CAY)) = m,(SP(X U CA)) =
H,(X UCA).

e Excision: For CW-triad (X; A, B), A/(ANB) ~ X/B. Apply theorem to YUCZ,CZ)
to show that H, (Y, Z) = H,(Y/Z).

O

2.3 Cellular Homology
Lemma 2.9. For an ordinary homology theory H,(—, —; G), if X is a CW-complex, then for any

n€Z Hy(X) = Hy1(5X).
Proof. Apply long exact sequence axiom on (CX, X): (H.(CX) = 0 due to weak equivalence
axiom):
02 Hyy (CX) = Hyy1 (CX, X) = Hp(X) = H,(CX) 20
Use excision axiom and weak equivalence axiom, we have:
H.(CX,X)2H,(CXUCX,CX) = H,(XX, %)
O

Proposition 2.10. For an ordinary homology theory H.(—, —; G), if X is a pointed CW-complex
with X' := %, then for anyn >0

Hy(x7, X ) & F(xnxnty o { Brer, O a =
0 q#mn

where I, is set of all q-cells.

Proof. Use additivity axiom and lemma [2.9] to see that H,,(\/ S") = @ G and H,(\/ S™) = 0 for
q # n. Use excision axiom and weak equivalence axiom to see

Hy(X™, X" 1) 2 Hy(X"UCX™ ™, CX™ 1) = Hy(X"/X" %) = Hy(\/ ™)
16]7’1

O

Corollary 2.11. If H.(—,—) is an ordinary homology theory, then for a pointed CW-compler X
with X1 := x, we have:

Hy(X") = forg>n
H,(X™) = H,(X™) = H,(X) forqg<n
H,(X") Ly H, (X" h is epimorphism

for any n > —1.
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Proof. Use long exact sequence of (X1, X"):

Co Hppy (X, X7 20 (X 2 H (XY = Hy (X0 XY 28 H (X7 -
oo Hy (X" X7 24 Ho(X™) 22 Ho(X™HY) o Ho(X™H, X™)

For g < n, Hy(X") = Hy(X"H) = ... = L, n Hy(X7).

For ¢ >n,ifn > —1, H(X") ¥ Hy(X" ) ~... 2 H (X)) x0,
ifn=—1, H(X )20~ H,(X1).

For ¢ = n, we have following exact:

_ Hn+1(Xn+17Xn) M Hn(Xn) l_*> Hn(Xn-H) N Hn(X7L+1,Xn) ~

O

Definition 2.5. For pointed CW-complex X with X ! := % and a ordinary homology theory
H,.(—,—) the (reduced) cellular chain complex {C,(X),d,} of X is defined by:

Co(X) := H, (X", X"
dp @ Ho(X™, X" 1)—>Hn (X 1)—>Hn (X X

Note. Use [cellular approximation| we can see that the construction C,(—) is a functor.

Theorem 2.12. For any ordinary homology theory H.(—,—) and any pointed CW-compler X,
(with X~ := %) the n-th homology of cellular chain complex is isomorphic to H,(X):

H,(C.(X)) = Hy(X, %)
if we set X1 := 0 in our C\(X), then H,(C,(X)) = H,(X,0).

Proof. Notice that we have commutative diagram with each straight line exact: (use long exact
sequence of pairs, n > 0)

H, (X" ?)=0

dpn n
lfn+1()(n+l )(n +1 )(n XN 1) d H, 1()(n 1 xn 2)
m /
= ker(0,) = ker(d
H, (X" 1) =0 H,(X™") = coker(On+1)

T

Hyp (X", X™) =0
For n = 0:
Hi (X1, X0 —5 5 Hy(X0, X~1) —» coker(dy) = Ho(X', X~1) —— Ho(X', X%) =0

O

Note. If the ordinary homology theory has coefficient Z, then the d,, : C’n(X) — Cp—1(X) is given
by:
Z;>1;,=¢€]+— Z ag’e;-kl
J€In 1

20



where a{ is degree of map
Bl:Smmder £ Xl o X/ X2 \[ o gntt By gn?
J'€ln—1
where ¢; is the characteristic map, p; maps every point not in S;’_l to *.

Corollary 2.13. For any ordinary homology theory H,.(—, —) and any relative CW-complez (X, A),
the cellular chain of X with is X! := A noted C.(X, A), we have:

H,(Cu(X,A)) 2 Hy(X/A, %) 2 H,(X, A)

Proposition 2.14. If (X, A) is a (pointed) CW-pair, (with X~! := « =: A™') use the natural
relative CW-complex (X, A) to obtain C.(X, A), then Cu(X)/Ci(A) = C (X, A) naturally.

Proof. H, (X", X" 1)/H, (A", A"~1) = H,((X/A)", (X/A)"1)

and Ho(X° X—1)/H, (A% A=) = H,((X/A)?, (X/A)~1). Naturality:
Dy Z
D Z

/| 8

D1, Z
D1, Z

—= @By %

= @1;571;5 7

where I7 is the index set of n-cells of Z, f: (X, A) — (Y, B) is a cellular map.

3.1 Homotopy Excision Theorem and its Corollary

Theorem 3.1. (Blakers—Massey) Homotopy Ezcision Theorem:

For pointed CW-triad (X; A, B) such that C := ANB # 0, if (A, C) is (m—1)-connected and (B, C)
is (n — 1)-connected where m > 2, n > 1. Theni: (A,C) — (X, B) is an (m + n — 2)-equivalence
for pairs.

Note. We can replace the "CW-triad” with ”excisive triad” in condition by theorem [2.7
Proof. See [herel

Corollary 3.2. Suppose that Yy < Y is cofibration, (Y,Yy) is (r — 1)-connected and Yy is (s —1)-
connected, then (Y,Yy) = (Y/Yo, %) is (r + s — 1)-equivalence. (r > 2, s > 1)

Proof. Yy — CY} is cofibration and (CYp,Yp) is s-connected. Use homotopy excision theorem)|
(with X =Y UCY,, A=Y, B=CY, C=Y)) tosee (Y,Yy) = (Y UCY,,CYp) is (r +s—1)-
equivalence. And (YUCYy, CYy) — (Y/ Yo, %) is homotopy equivalence since Yy < Y is cofibration.

O

Corollary 3.3. Forn >2, f: X =Y is (n—1)-equivalence between (s—1)-connected spaces, then
(My, X) — (C’Jf7 %) 1s (n+s—1)-equivalence. Where C;r =YU;CtX, CtX = (X xI)/(Xx{1}).
18 the unreduced mapping cone and the unreduced cone.

Proof. f is (n — 1)-equivalence implies (M, X) is (n — 1)-connected. Use corollary above.
O
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Corollary 3.4. Forn > 2, if f : X = Y is pointed map between (n — 1)-connected well-pointed
spaces (that is, pointed space whose inclusion of the base point is (closed) cofibration). Then Cf is
(n — 1)-connected and m,(Mys, X) = 7,(Cy, *) is isomorphism.

Proof. Use homotopy extension property to extend to unreduced case. f is map between (n —1)-
connected space implies f is at least a (n—1)-equivalence. Therefore (M, X) — (Cy, ) is (2n—1)-
equivalence, Since we have n < 2n — 1 for any n > 2, m,(My, X) — m,(Cy, *) is isomorphism.

O

Theorem 3.5. (Freudenthal Suspension Theorem) If X is well-pointed and (n — 1)-connected
(n > 1), then the map:
0 mg(X) = g1 (EX) = 7y (QXX)
fe=Xf
is isomorphism if ¢ < 2n — 1 and epimorphism if ¢ = 2n — 1.

Proof. If we have f : (I9,019) — (X, *) then f x id; : [971 — X x I will give a map f x id :
(I7+1) 919+t 911 x TU I x {1}) — (CX, X, x) since J¢ = I x I UJI x {0}, it does not give a
map in 7,41 (CX, X). we should change f x id; into f x —id;. we have commutative diagram:

71 (CX, X) —2 711 (CX/X, %) (X —ids) —— [po (Fx —id))
o) ]
7g(X) ———— Tq41(SX) [f] —————— 2]

Where p : (CX,X) — (CX/X,x) is the canonical quotient map and ¢ : [f] — [f x —id;] makes
Tg+1(CX) — g1 (CX, X) — my(X) — my(CX) split in middle (that is, ¢ is inverse of the
connecting homomorphism 9). We verify the commutativity:

—Xf (1,019 — (CX/X, %)
(s,t) = f(s) A (1 =)

o(f x —idy) : (19, 019%Y) — (CX/X, %)
(s,t) = f(s) A (1 =)

Since X — CX is cofibration and n-equivalence between (n — 1)-connected spaces, p is an 2n-
equivalence. Therefore, ¢ + 1 < 2n implies —o is isomorphism, ¢ + 1 = 2n implies —o is epimor-
phism, and we have —o is iff o is.

O

Corollary 3.6. IfY is well pointed (n—1)-connected space then Y — QXY is (2n—1)-equivalence.
By theorem for any CW-complex X with dimX < 2n —1, ¥ : [X,Y], — [2X,XY], &
[X, QXY ], is bijection.

Definition 3.1. We now define the ¢-th stable homotopy group:

TH(X) = lim mpr (57X) 2 mop 2 (BM2X) 2 ey (B"X) (R —1>k)

(Since XX is (n — 1)-connected)
And stable homotopy class:
[(X,Y]] = lig[ErX, XY

r

Note. We'll see later that {72 },cn defines a generalized homology theory.

22



3.2 Hurewicz Theorem
First, we use homotopy excision theorem to prove following lemmas:
Lemma 3.7. (every ST ~ S™) We have canonical i, : ST < \/

mw(\ S5 =2z,

acA a€cA
where [iq] =1 € Zoy € @ cp Za and every L, = 7.

Forn =1:
m(\ S2) =[] Za

acA a€A

wcaSa and forn > 1:

where ] is taken in category Grp, [ia] =1 € Zq C [[,c 4 Za and every Z, = 7Z.

Proof.

Case n = 1:

Apply the Seifert-van Kampen theorem.

Case n > 1:

Suppose each S7' have CW-complex structure with one 0-cell and one n-cell. Consider finite product
[1;<i<x SP* and its subcomplex, finite wedge product \/; ., SI".

The inclusion
V se— I s¢
1<i<k 1<i<k
is (2n—1)-equivalence since [[; ;<1 SI* =V <;<x Si* only have cells of dim > 2n. (use lemma
Use exact homotopy sequence of pair, we deduce that m4(\/;<;<r ) = Tg([11<;j<r SI") = B 1cicp Z
is an isomorphism for ¢ < 2n — 2. And S < \/; ;1. SP" > [11<;<1 SI* is just the i-th inclusion
S — [ <i<p Si* which represents 1 € Z; — @, ;) Z;. Infinite wedge case:

@1gigk 7q(S7) — 7rq(\/1§i§k S7)

| |

Ducama(52) gt Ta(Vuea S2)

@.c 4 lax is monomorphism since every homotopy S™ x I —\/
iax 1s epimorphism since every map S™ x I — \/

aca Sa has a compact image, and

S7? has a compat image.

acA a€A

O

Lemma 3.8. Forn > 1, if we have a map f : [[,c Za — [lycpZy (case n=1)

or amap f: @ucaZa — Dyep Ly (casen >1).
Then there exists a map ¢ : \/,c 4 S& — Vpen St unique up to homotopy and satisfy m,(¢) = f.

Proof. Suppose f(1a) = [¢a] € [S™, Viep Sil«, then @, is indeed a map S; — \/,c5 Sy'. Now we
define ¢ :=\/, ba : Voca St = Ve Sy - For any a € A, ¢|sn = ¢q, we have

Tn(9)(1a) = [¢lsy 0 idsy] = [¢a] = f(1a)

which implies 7, (¢) = f since they are group homomorphisms.
Uniqueness up to homotopy: m,(¢)[ls] = mn(¢')[1a] implies ¢|gn =~ ¢'|sn rel*. Therefore
¢ ~ ¢ rel .
O

Definition 3.2. If H,, is a ordinary homology theory with coefficient Z,
then the map

hx : mn(X) = Hy(X) := Hy (X, %)

is called Hurewicz Homomorphism.
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Note. h(_) is natural transformation since we have

h

mn(X) — = Hup(X) [f] f(1)
m(Y) T f{n(y) [g0 f] —— (g0 [)«(1) = (g« 0 f)(1)

commutes. Moreover, it commutes with connecting homomorphism.

Lemma 3.9. If X =\/_, 5", hx : m(X) — H,(X) is abelianization if n = 1, isomorphism if

n > 2.

a€A

Proof. Directly from lemma (we used homotopic properties of spheres only in proving is
lemma) O

Theorem 3.10. (Hurewicz) If X is (n—1)-connected, then hx : m,(X) — H, (X) is abelianization
if n =1, isomorphism if n > 2.

Proof. We can assume X is CW-complex with X"~ ! = % and each characteristic map is pointed.
(since we have theorem

For CW-complex X, m,(X") 2 7, (X) and H,(X"") = H,(X), Since we have
fhomotopy group| and |cellularity of homology|

Then we have X™ = \/, .5 Sp', X! = C, where ¢ : \/ o, S — X" are the characteristic maps.
Use naturality of h_), we have maps between exact sequence:

n(Vaen S2) —2 0, (X™) —— mn(Cy) —— 0

JhVaeA sa Jhxn Jhcﬁ

Hy(VoecaS™) — H,(X") —— H,(Cy) —— 0
If n > 1, exactness of top row is directly from lemma (Mg, \ 4eaS) is (n — 1)-connected
since we have lemma[L.13) 5-lemma shows that hc, is 1somorphism.

If n = 1, Seifert-van Kampen theorem shows that m1(Cy) = 71 (X")/(Im ¢s)por. (where for A C
a group G, (A)nor == {gAg? | g € G}). The top row is not exact, but top row’s abelianization
is exact since (Im f),o./[B, B] = Im f/[B, B] for any group morphism f : A — B. Therefore we
have diagram below with the middle row and the bottom row exact:

A—L B % L G=B/Imflew —— 0 — 0

B ! G 0 0

IR

o

1R
1R

A B’ G’ 0 0

Finally apply 5-lemma on the middle row and the bottom row.
O

Corollary 3.11. (Relative version of Hurewicz theorem) If (X, A) is (n—1)-connected CW-pair, A
is 1-connected subcomplex and n > 2, then the Hurewicz morphism h(x ay : ™o (X, A) — H, (X, A)
(defined analogue to hx ) is isomorphism.

Proof. Use theorem and Hurewicz theorem of hx /4.

Uniqueness of Ordinary Homology Theory:
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Theorem 3.12. If H.(—,—) is ordinary homology theory with coefficient Z on CW-complezes,
then H,.(—,—) is unique up to natural isomorphism.

Proof. Since H,(C.(X)) = H,(X) naturally (in X), our goal is to prove the complex defined by
Cl(X):=mp (X", X" )
d;,b = ﬂ—n(Xann_l)ab 2) anl(Xn_l)ab — anl(Xn_la Xn_2)ab

is isomorphic to C,(X) naturally. Isomorphic:

(X X" V) gp —2— M 1 (X" oy —— M1 (XL, X772),

Wn(Xn/Xn_l)ab anl(Xn_l/Xn_Q)ab

o o

Hﬂ(xn/xn—l) Hn_l(Xn—l) Hn_l(Xn—l/Xn—2)

Naturality directly follows from naturality of Hurewicz morphism.

Note. Similarly uniqueness pf ordinary homology theory with coefficient G.

3.3 Moore Spaces
Definition 3.3. A space X is Eilenberg-Mac Lane space of type K(G,n) (where G is group

and is abelian for n > 2) if

G n=gq
0 n#q

We see that [SP S™ is a K(Z,n)l Now we use this to construct other K(G,n).

Note. In order to construct K (G, n), we construct a space M (G, n) which have m,(M(G,n)) = G,
7q(M(G,n)) =0 for ¢ < n and we can apply SP on it to kill all dim > n homotopy group.

g (X) :{

Proposition 3.13. For any k € Z, there is a map ay : S* — S with ay, and C,, = S U,, €2 is
the desired M(Z/kZ,1) (that is SP(S! U,, €?) is a K(Z/kZ,1)).

Proof. Consider sequence S* % S* < C,, — XS!' = C,, /S, we apply an usual form of
Thom Theorem| to see that SP(C,,) — SP(S?) is a quasi-fibration with fiber SP(S!). Then we

have exact sequence:

oo = my(SPSY) = 7, (SP Cy,) — my(SP S?) — 7,1 (SP S*) —
s — WQ(SPSl) — WQ(SPCak) — 7T2(SPSZ)
— 71 (SP S*) = 7 (SP C,, ) — m1(SP S?)
)

We can conclude that my(SP C,, ) = 0 for any ¢ # 0,1 and:

0— m(SP Cy,) = m2(SPS%) =Z % 1 (SPSY) = Z — m(SP Cy, ) — 0
exact. Where 0 is defined by:
T (SP S?) = [D?, S, %;SP C,,,SP S*, %] > f — f|s1 € [S*, S'].

(Now we want to show that 0 is multiplication by k)
The 1 € Z =2 75(SP S?) is represented by [is : S% < SP S?].
Since [D?, S*,*;SP C,,,SP S, %] 25 [D?,8; SP S, ] is isomorphism,
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idﬁz Uag
—p

and the map ¢ : (D%, S!) (Cay, SY) = (SP C,,,, SP St) satisfy po ¢ = i,

the 1 € Z = m3(SP C,, , SP S) is represented by ¢. Then we have d(1) is represented by ¢|s1 =
i1 o ar where i : S < SP S1.

The map 9 is Z 3 n — kn € Z since [iy o ai] = k.

Therefore m2(SP C,, ) = 0 and 1 (SP C,, ) = Z/kZ.

Proposition 3.14. For eachn > 1, k € Z, SP(S" Ugn-1,, ") is a K(Z/kZ,n).

Proof. For ¢ > 1, X(59Usq-14, €?7) & 859 Usqq, Bet™! = ST Usq,, €772 since X is left adjoint
of  in TOP, and the pushout is took in TOP,. Observe that 7, (SP X) = m,11(SP XX), now
we have done.

O
Since H,(X) 2= H, (X UCx) = H,(X, ), we have
m(SP(\/ X:)) = Ho(\/ Xi) = Ho(\/ X, %) = Ho(J[ Xi, [ %) = €D Ha(Xs, %) = @ 7a(SP X3)
icl icl icl iel  del il iel
We can deduce the following proposition immediately:

Proposition 3.15. For finitely generated abelian group G = (D, Z) ® (D, <;<), Z/diZ), (where
r €N, each d; € Z) we have SP((V,.5") V (V<;<x (5" Ua,, e"t1))) is a K(G,n).

Since every abelian group G have a free resolution sequence:
0Pz L Pz—c—o
acA beB
exact. And for every group G = F(X)/(Y )nor (where FI(X) =]

and (YY), is the normal subgroup generated by Y'), we have:

:1
1» I z, 2% (]2, -G =1
YEY ) nor rzeX

rex Lz is the free group functor

exact.

Next proposition allows to construct spaces M (P ,c 4 Z,n) and M([[,c 4 Z,1):

Definition 3.4. For n > 1, G an abelian group, we have exact sequence

OA@ZL@Z—»G—W

acA beB
Then we have: (with ¢ is the map obtained using lemma
\/ 525 \/ sp Gy
acA beB

the Moore space of type (G,n) is defined as M (G, n) := C.

For n =1, G a group, we have exact sequence:

:1,
1— H ZyﬂHZw—»G—M
YEY Y nor z€X

Then we have: (with ¢ is the map obtained using lemma

\/ siS N\ Sk ey

yE<Y>nor Te€X

the Moore space of type (G,1) is defined as M (G, 1) := Cy.
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Proposition 3.16. m,(M(G,n)) =G

Proof. For n > 1, use diagram:
My

%,

X —Y

@
To see:
i — 7T7l(vaeA S;L) — WH(M¢) E— 7Tn(]wcz5v\/a»eA SZ}) - ﬂ'n—l(vaeA Sg) -
\ =
= 7Tn(\/beB Sy) 2=
Doca Za - BrcaZa T (M(G,n))

Where ¢, is induced by q : (Mg, \V,c4 S%) = (Cp,%). Vaca Sy is (n — 1)-connected, implies
Tn-1(Vaca Sa) = 0. (Mg, 4 S%) is (n — 1)-connected due to lemma Therefore we have
@« 1s isomorphism using lemma [3.2] Diagram above reduces to:

0= Pz L Pz — 7a(M(G,n)) =0
a€A beB

For n = 1, use Seifert-van Kampen theorem.
O

Proposition 3.17. For any n > 1 and any group morphism [ : G — G’ there exist morphism
fv s M(G,n) — M(G',n) such that far. = f.

Proof. We have following for n > 1: (since free Z-module is projective)

0—>EBG€AZG>+>@b€BZb a G 0

i r1 i o J{f
G

O @a/eA/ Za’ ’ % ? ®bIEB' Zb/ y O

/

q

And we have following for n = 1: (where i(11,1,(1, ,)1) := Lalp(1a-)™")

7 q
1 ’ H(a,b)e(c,c) Zlalb(la-b)-l ’ ’ ngc Lg G 1
%T‘l i’l'o ‘/f
L —— e ,on Zrtyosn— 5= Ugpea Zy — G 1

We could obtain: (use lemma

n ¢ n
VacaSe — Ve Sy — Cy

XIJ (o2 JXO fm

I
|
|
~
n n
\/a’eA/ Sa’ &' \/b/GB’ Sb’ C‘i"
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Finally we have: (use universal property of cokernel)

n Pu=t n
0 —— T(VeecaS2) —— (Ve Sy) —— m(Cy) —— 0

J{Xl*—rl J{XO*—""O J{fM*=f

0 —— m(Vyca Si) ﬁ Tn(Vyep Str) — m(Cg) —— 0

Theorem 3.18. SP(M(G,n)) is a K(G,n) if G is abelian.
Proof. In the of Moore spaces, we have: (use notations in the construction)

n ¢ n
\/aEA Sa viB Sb
My ——— Cy

which induces quasi-fibration SP My — SP Cy with fiber SP\/,_, Si'. Then we have long exact
sequence:

s mg(SP [ 8%) 255 mg(SP My) — mg(SP Cy) — me_1(SP \/ S2) = -+
acA acA

Sequence above says if ¢ # n and g # n + 1, then 7,(SP Cy) = 0. If ¢ = n + 1, we have:

0 — T11(C) — Tn(SP Ve g ST) =2 10 (SP Ve p S7) — 0 (Cy) — 0
1 1 1
0 @aGA La I EBbeB Ly, G 0

We have m,41(Cy) = 0 since ¢, is monomorphism.
O

Note. We have two equivalent ways to construct ordinary homology theory with coefficient G € Ab
from H,(—,—;Z):

1. Tensor cellular chain complex with G: C.(X) ®z G (differentials are d,, ® idg)

2. Hy(X,A;G) := H,(X UCA) A M(G,n))

Note. Construction of Eilenberg Mac-Lane space using Moore spaces is limited, there is another
construction of K(G,n) allows non-abelian group G for n = 1. (use geometric realization)

Definition 3.5. The weak product of pointed {Z;};cz spaces is

o]

o= i (]2)

S€eFin(N) S

whose underlying set is:

{(a;)ien € H Z; | only finite a; is not * }
i€N
Theorem following shows why K (G, n) is important:

Theorem 3.19. If Y is a path-connected commutative associative H-space with strict identity
(1-y=1y), then there is a weak equivalence

o

II,. Km@)n) =Y
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Moreover, we have weak equivalence

[[ K@ (Y),n) =Y
n>1
Proof. Take free resolution of 7, (Y):
0Pz > P2 5 mn(Y) >0
acA beB

(for n = 1, replace @@ with J]). and obtain:

|
|
P I
k =) JVbEB 9% ¥id
|

* . Y Ciﬁy

(2

where [g;] = ¢(15). We have f,, : m,(M (7, (Y),n)) = 1, (Y") is an isomorphism.
Construct f/* : [T, M(m,(Y),n) =Y by:

£ T M(ra(¥)ym) » ¥
k

(a1,ag,...,ax) = f(a1) - f(az)--- f(ax)

where —- —:Y XY — Y is the H-multiplication on Y.

Strict identity, commutativity and associativity says it is homotopically unique rel .

Therefore we have a well-defined map f* : SP* M(m,(Y),n) — Y (for each k) which commutes
with inclusion SP* < SP***.

Directly from above, we have f,, : SP M (7,(Y),n) — Y induces isomorphism on m,(—). (in case
n =1, m(Y) is abelian since Y is a commutative H-space)

Similarly we have f : SP(\/,, M(m,(Y),n)) = Y obtained from \/, f; : \/, M(7m,(Y),n) =Y.

SP(\/,, M(m,(Y),n)) =[], SP M(m,(Y),n) since we have |SP(X; V X3) ~ SP X; x SP X, and
commute with directed colimit e can deduce that f|sp prir. (v)n) = fn Irom construction of the

ith di d colimit] Wi ded hat f (T (Y),n) = Jn B i f th
homeomorphism.

[e]
Last, [[,>1 K(mn(Y),n) = [],,»; K (7 (Y),n) is weak homotopy equivalence since S™ have com-
pact image. (is homotopy equivalence since they are CW-complexes)
O
Corollary 3.20. IfY is a space, then there is a weak equivalence

o

11 o K(Ha(Y),n) » SPY
Moreover, we have weak equivalence

[ 5E(H.(Y), n) = SPY

n>1

4.1 Axiom for Cohomology and reduced Cohomology

Definition 4.1. An Unreduced Generalized Cohomology Theory (E*,¢) is a functor to the
category of Z-graded abelian groups:

E*(—, =) : TOPcw(2)®® — Ab”,

with a natural transformation of degree +1:

On,(x,4) : E"(A,0) = E"(X, A) (called connecting homomorphism)

satisfying following 3 axioms:
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¢ Homotopy Invariance:
Homotopy equivalence of pairs f : (X, A) — (Y, B) induces isomorphism

E*(f) : B*(Y, B) — E*(X, A)

e Long Exact Sequence:
Map A — X induces a long exact sequence together with §:

- E"(X,A) = EM(X) = EMA) S ETY(X,A) = -
where E™(X) := E™(X, ().

e Excision: ..
If (X; A, B) is an excisive triad (that is, X = AU B), then inclusion (4, AN B) — (X, B)
induces isomorphism

E*(A,ANB) = E*(X, B)

We say (E*,0) is additive if in addition:
e Additivity:
If (X, A) = H)\(X,\,A)\) in Topcw(Z), then inclusions iy : (X)\,AA) — (X, A) induces
isomorphism

(JTisn) s B7(X, A) = [ E*(X2, Ax)

We say (E*,0) is ordinary if (E*, ) satisfy all axioms above and:
e Dimension:

E70(x,0) =
An unreduced ordinary cohomology theory is Caﬂéd’ x(?v)ith goefﬁcient G if E%(x,0) = G.
Definition 4.2. An Reduced Generalized Cohomology Theory (E*,U) is a functor from
opposite of category of pointed CW-complexes to the category of Z-graded abelian groups:
E*(—) : TOPYy = — Ab”,
with a natural isomorphism of degree +1:
o : E*(—) = E*T1(%(-)) (called suspension isomorphism)
satisfying following 2 axioms:

e Homotopy Invariance:
Homotopic pointed maps f,g : X — Y induces same map:

E*(f) = E*(9) : E*(Y) = E*(X)
¢ Exactness:
Pointed map i : A < X and j : X < C; gives a exact sequence in Ab”

We say (E*,0) is additive if in addition:
¢ Wedge Axiom:

The canonical comparison morphism (induced by morphisms X; — \/, X;)
E*(\/ x:) = [[ E*(x%3)
i i

is isomorphism.
We say (E*,0) is ordinary if (E*, o) satisfy all axioms above and:
e Dimension:
E79(8% =0 B
A reduced ordinary cohomology theory is called with coefficient G if E°(SY) = G.

Note. They are related to each other by E*(X, A) := E*(X UCA) and E* := E*(X, ). (proof is
omitted)
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4.2 Brown Representability Theorem

We will prove that any additive reduced cohomology theory is naturally isomorphic to some
[_7 Y]*

Definition 4.3. Cj := Ho(C), where C' is category of path-connected pointed CW-complexes.

Definition 4.4. A weak limit/colimit is just ordinary limit/colimit without the uniqueness its in
universal property.

Lemma 4.1. [Cy| have weak coequalizers

Proof. If we have map f,g: A — X in Cy then define Z := X; Uy (A x I) Uy Xo/(x,0) ~ (x,1)
where X; = X x {0}, X2 = X x {1}. j : X — Z is the weak coequalizer map. i : A X I — Z is
the homotopy jo f ~ jog.

For s : X — Y such that thereis h: so f ~ sog, we have sUhRUs : X; Uy (Ax I)Ug Xy =Y,

and it defines a map s’ : Z — Y such that s’ o j = s.
O

Lemma 4.2. Suppose {Y, }nen is a sequence of objects in with for allm € N, iy, 1 Y, — Y1
is cofibration.
LetY = hﬂn Y., then there is coequalizer diagram:

V., in
Vi Yo o=t Vi Ya Yoty
n 1 Y’Z

where jn, Y, = Y11 — Y.

Proof. j, 100, = jyoidy,, and if we have g : \/, Y;, — Z such that go\/,, i, >~ go\/, idy, . Define
gn = gly, , use induction on n and HEP of cofibration, we have g,, ~ g, such that g;, ., oi, = g;,,
there data together defines a ¢’ : Y — Z satisfy desired properties.

O

Definition 4.5. A Brown functor is a functor H : Cg° — Set*/ send coproducts to products,
weak coequalizers to weak equalizers:

H(\/ X;) = HH(Xi)

If j: X — Z is coequalizer of f,g: A — X,
then H(j) : H(Z) — H(X) is equalizer of H(f),H(g) : H(X) — H(A).

op

Note. Every additive reduced cohomology theory E™(—) : TOPE/W — Ab — Set"/ is equivalent

to a Brown functor.

Definition 4.6. Any u € H(Y') determine a natural transformation T, : [—,Y]. — H(—) by

[(X,Y]> f——— H(f)(u) € H(X)

! l

[X')Y]> foa—— H(foa)(u) € HX')

where a € [ X', X].

uw € H(Y) is n-universal (n > 1) if T, ga : [S?, Y], — H(S9) is isomorphism for 1 < ¢ <n—1
and epimorphism for ¢ = n.

u € H(Y) is universal if u is n-universal forall n > 1.

Y is called an classifying space for H if there exists u € H(Y') that is universal.

Lemma 4.3. If H is a Brown functor, Y,Y' € Cy, u € H(Y), v’ € H(Y') are universal, and
there is a map f:Y — Y’ such that H(f)(u') = u, then f is a weak equivalence.
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Proof. Directly from T, ga, T3 gqa are isomorphisms:

7 (Y) —Ls (V)

Ty
Tuysq J u’,S9
O

Lemma 4.4. If H is a Brown functor, Y € Cy and u € H(Y'), then there exists Y' € Cy obtained
from'Y by attaching 1-cells, and a 1-universal element v’ € H(Y") such that H(i)(u') =u € H(Y).
(where i : Y < Y')

Proof. Let Y :=Y V (V,cp(v) Sa)s H(i) is just projection:
H(Y') = (H(Y) X [laen(sr) H(S)) = H(Y).
Let g, := S~ S! — Y/,
u = (u,[],a) e HY) x H(VaeH(Sl) Sh.
Ty s 2 [SY, Y], — H(S') is epimorphism since H(g,)(u') = a € H(S?).
O

Lemma 4.5. If H is a Brown functor, Y € Cy and uw € H(Y) is n-uniwversal (n > 1), then
there exists Y' € Cy obtained from'Y by attaching (n + 1)-cells, and a (n + 1)-universal element
u' € H(Y’) such that H(i)(v') =u € H(Y). (wherei:Y —Y’)

Proof. Let K := ker(T, s=), we have:

Ty, sm

x = K — [S", Y], ——— H(S") — *

Let Y1 :=Y V (V;cpgn+1) 57

?

*1). We notice a cofib sequence:
Vst
k7 Y1 = Cf
ke K

where f:=\/, k. Let Y':=Cy.
ur = (4 [l epr(snir) @) € H(Y1) where gq := Sntl ~ §ntl < Y], The cofib sequence is just a
weak coequalizer diagram in Cjy:

f
Viex Sk F; Y, — Y/

Apply H on it:
HY') —— H(Y1) /= H(V ek S)

We have H(f)(u1) = [Teere HE) (1) = Tyere H(F)(w) = TTxe Tursn (K) = 0 = H(O)(un).
By definition of weak equalizer, there exists v’ € H(Y’) such that H(¢)(v') =uw € H(Y). (i
Y")

Verify that «' is (n + 1)-universal:

T,/ gn+1 is epimorphism since T,/ gn+1(i1 0 ga) = Ty gn+1(ga) = a € H(S™T1).

Current goal is to prove T,/ se, ¢ < n are isomorphisms.

We have commutative diagram:

1 (Y",Y) (V) —2 (V') —— mo(Y,Y)
u!, 849
H(S?)

And we notice that 7,(Y’,Y") = 0 for ¢ < n. Then we have
T, sa is isomorphism for ¢ < n and epimorphism for ¢ = n implies that
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T, sa is isomorphism for ¢ < n and epimorphism for ¢ = n.
For any k € K — m,(Y), 10k =0 € m,(Y"). That is, K C ker(i.).
And we also have ker(i,) C K, since T/ gn 04y = Ty gn.
ker(iy) = K := ker(T,, gn) implies that T, g is isomorphism.
]

Theorem 4.6. H is a Brown functor, Y € Cy and uw € H(Y') then there is a classifying space Y’
for H such that (Y',Y) is a relative CW-complex and the universal element u' € H(Y') satisfying
HH)w)=u. (i:Y <=>Y')

Proof. Construct spaces {Y, }nen and u,, € H(Y,,) as following:
1. Yo=Y, up:=u
2. Y7, u; is obtained from lemma [4.4
3. Use lemma to construct Y, 41, up41 from Y, u,.

Let Y/ := hﬂ{Yo — - =Y, = Y,41 < -} then we have weak equalizer diagram:

e
—_—
[T H(idy,,)
neN
and
(H H(Zn))(H Up) = H Unies H H(idYn)(H Un)
neN neN neN neN neN
(by H(in)(tnt1) = uyn) Then there exists u’' € H(Y’) satisfying Vn € N, H(j,) = u,. (where
Jn Y, =Y
Verify that v’ is universal:
mq(Yg+1) w e mqe(Y')
N .

(The isomorphisms in diagram are Ty, 54, Tu,ys,50, Tur,5q)-
O

Corollary 4.7. For any Brown functor H, there exist classifying spaces for H which are CW
complezes.

Proof. Use theorem [4.6] with ¥ = .
O

Lemma 4.8. H is a Brown functor, w € H(Y) is a universal element, i : A — X is a relative
CW-complex. Given map g: A —Y and v € H(X) satisfy:

H(X)>wv

|

H(Y) 3w —— H(A) 5 H(g)(u) = H(i)(v)

Then exists map g’ : X — Y such that ¢'|a = g and diagram:

commutes.



Proof. Let (Z,j) be weak coequalizer of the diagram:

At 4 x

then we have weak equalizer diagram:

H(Z) —— H(X) x H(Y) ;1((9) H(A)

We also have 4
H(3) H(X)

H(Q)T TPI_H(il)

H(Y) e H(X) x H(Y)

which implies H (i) o H(i1)(v,u) = H(i)(v) = H(g)(u) = H(g) o H(i2)(v,u).

Then there is a element ut € H(Z) such that H(j)(ut) = (v, u). Use theorem [4.6]to obtain relative
CW-complex (Z’, Z) and universal element v’ € H(Z') such that H(iz)(u') = u™. (iz : Z — Z')
By lemma[4.3] j' == izo0jo0is:Y < X VY — Z < 7’ is a weak equivalence. We also have
diagram in TOPE/W: (since (Z,7) is weak coequalizer in Cp)

At v X

gJ < Jizojoil

Y —— 7
J

A
g’ 170j0i1
f}

Y

S
and verify that H(g")(u) = H(g')oH (j')(u') = H(izojoir)u’ = H(i1)oH (j)(u™) = H(i1)(v,u) = E]

Apply HELP

\J

1™\

\

Theorem 4.9. IfY is a classifying space for a Brown functor H and v € H(Y) is a universal
element, then T, : [-,Y] — H(—) is a natural isomorphism.

Proof. T, x is epimorphism:

For v € H(X), use lemma with (X, A) := (X, *) to obtain a map ¢’ : X — Y such that
T, x(g') = H(g)(w) = v.

T.,x is monomorphism:

Let fo,f1 : X — Y such that Tu,X(fl) = Tu,X(fQ).

Define CW-complex X’ := X x I /{x} x I with CW-structure X'? = (X?x I UX97 1 x I)/{x} x I
for ¢ > 0. L

Define h: X' — X by (z,t) — = and define v € H(X') by v = H(fo o h)(u).

Let A := XVX = X x9I/{x}x0I,i: A’ — X’ and define f : A = Y by (a,0) — fo(a), (a,1) —
f1(a). Then we have H(f)(u) = (H(fo)(u), H(f1)(w)) = (H(fo)(u), H(fo)(w)) = H{fyohoi)(u) =
H(i)(v). Use lemma [4.8| with (X, A) = (X', 4’) to obtain a f’: X’ — Y such that f'|4» = f and
H(f")(w) = v.

h:X xI— X' L5 Y is the desired homotopy go ~ ¢1-
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Corollary 4.10. IfY,Y’ are classifying spaces of a Brown functor H, and w € H(Y ),w € H(Y")
are their universal elements, then there is a homotopy equivalence f : Y — Y which is unique up
to homotopy and satisfy H(f)(u') = u.

Proof. By theorem Twy : [Y,Y'] - H(Y) is isomorphism. Then there is unique f : [¥,Y”]

such that T v (f) = u. (notice that T, v (f) = H(f)(v')) By lemma and theorem fis
homotopy equivalence.

O

Definition 4.7. A sequential pre-spectrum in topological spaces is:
e A N-graded compactly generated space : X, :={X,, € TOPE/G}neN.
e Structure maps : {0, : XX, = Xpt1 fnen-

Map between sequential pre-spectra is map between N-graded spaces f, : X,, — Y, such that

nx, 2, sy

XnJrl — Yn+1
fn+1

commutes.
An Q-prespectrum is a sequential spectrum X, with adjoints of structure maps o,, : X,, = QX 11
are weak equivalences.
For an Q-prespectrum X,, we can extend it into a Z-graded space by setting X_,, := Q" Xj.
Theorem 4.11. If (E*,a) 1s a reduced additive cohomology theory, then there exist homotopi-
cally unique Q-prespectrum Y, (each Y, is a CW-complex) such that E™(—) = [—, Y, ]« naturally.
(naturality implies diagram below commutes)

E"(-) [—

Yol

E"H(E(-)) —— [B(), Yari]s & [ ot

If Y. is an Q-prespectrum, then B = [—, Vo], o ¢ [=, Yale = [=, Q¥ppa] 2 [2(=), Yasa] is a
reduced additive cohomology theory.

Definition 4.8. For an abelian group A, the Eilenberg-Mac Lane prespectrum K A, is defined
by KA, := K(A,n). Structure maps is KA,, - M — QK A,, ;1 where M is a CW-approximation
of QK A,,+1, and homotopy equivalence K A,, — M is obtained from corollary

Proposition 4.12. If a reduced additive cohomology thoery H* o is ordinary, then FI”(—) =
[—, KA,]« naturally.

Proof.

5.1 Pointed and Unpointed Homotopy Classes

Proposition 5.1. There are pointed spaces X,Y € TOP* | if X is well-pointed, then there is a
right action of m1(Y,yo) on [X,Y]..

Proof. The right action is given by: [f] - [a] := [fa,l] where fa,l = fo(—,1)

x
%« —2 5 X

l l

xx [ — X x1

aem1(Y,y0) Y
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Verify it is well-defined:

By the property of closed cofibration, fa is unique up to homotopy, hence independent from choice
of a € [a] and f € [f].

Verify it is an group action:

If e is the constant loop in 71 (Y, yo), then fo(z,t) = f(z).

If [a], [¢] € m1(Y, 30) then [f] - [a] = [faa], (If] - [a]) - 0] = [( A;,fz),ll define
h:XxI—=Y

fa(z,2t) t<1/2
(1) = {(fa,l)b(x,zt —1) t>1/2
Since h(—,0) = f, h(zo,—) = a b h= foy. [f]- (la] - [0]) = [fas (= 1)] = [A(=, )] = (If] - [a]) - [bé-]

Theorem 5.2. If X,Y € TOP*/ there is a forgetful map ¢ : [X,Y], — [X,Y] where [X,Y] is the
Jree homotopy class of (not necessarily pointed) maps X — Y. If (X, o) is well-pointed and Y is
path-connected, then ¢ induces bijection ¢ : [X,Y]./m (Y, y0) = [X,Y].

Proof. ¢ is well-defined:

For any a € m1 (Y, yo), f is freely homotopic to fa(—, 1).

¢ is injective:

If we have ¢([f]) = #([g]) which means there is free homotopy h : f ~ g, let a := h(xg, —), then
b= foy 1] la] = [h(=, 1)] = [g].

¢ is surjective:

Suppose g € Homrop(X,Y) is an unpointed map, choose a path a : g(xg) =~ yo, extend a, g:

¥ —20 4 X

o([h(=,1)]) = [g]-
O

Theorem 5.3. If (W,e) is a well-pointed H-space, p : W x W — W is its H-multiplication.
Then p is homotopic to another H-multiplication p' such that p'(—,e) = idw = p/(e, —) is strict
identity.

Proof. Let [ := po (e,idw) ~idw, r := po (idw,e) ~ idw,
h:WNVWXxI—W

(w,e,t) = r(w,t)
(e,w,t) — l(w,t)

Then we have diagram: (since W VW — W x W is cofib)

WNVW —— W x W

l |

WNWxIT — WxWxI
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Proposition 5.4. If (X, zq) is well-pointed space, (W, e) is a well-pointed H-space, then w1 (W, e)
acts trivially on [ X, W],

Proof. For [f] € [X, W], a € 71 (W, e) define
h: XxI—>W
(@,t) = ' (f(z),a(t))

[f] - [a] = [h(—,1)] = [f] since h ~ .
]

Corollary 5.5. If (X, x0) is well-pointed space, (Y, e) is a well-pointed path-connected H -space,
then ¢ : [X,Y]. — [X,Y] is a bijection.

Theorem 5.6. X is a space with every point well-pointed, m<1(X) is the fundamental groupoid of
X there are functors

U, :7m<1(X) = Grp
xo = (X, o)

Hom,_, (x)(%0,21) 3 [a] = ([S™, X]. 3 [f] = [fa(=, 1))
with property : for every f : X — Y, [a] € Hom,_, (x)(z0,21) diagram

v, (a
(X, 20) % (X, 1)

f{ Jf*

T (Y, £(@0)) gy ™olY' £ (@)

commutes.

Lemma 5.7. Assume X,Y, Z are path-connected and well-pointed. Consider functor [—, Z]. apply
on Barratt- Puppe sequence

s 2Y 2 25 BX, 20 S ey, 2) S Y 21 DS [ 20,

The sequence is exact (in category Set*/), and we have following:

XX, Z]. acts from right on [Cy, Z]..

¢ [2X, Z)« — [Cf, Z)« is a map between right [EX, Z),-sets.

a*([z]) = ¢*([2']) iff exists some [y] € [EY, Z]« such that [z] = Zf*([y]) - [2'].
i*([2]) = i*([]) iff exists some [z] € [EX, Z]. such that [z] = [2'] - [x].
Im(Xq* : 22X, Z]. — [EC%, Z].) is central subgroup of [SCf, Z],.

Grds o o~

Proof. 1. Define h-coaction map:

Uf:Cf—>Cf\/ZX

(4,0) = (,0)
(z,2t) € C4 t<1/2
(@1) = {(w,Zt— HeSX t>1/2

o —L — ¥Xx

Ufl luXH*

C;VEX — X VEX
qVids x

3. ¢*([z]) = ¢*([2']) & ¢*([z] - [2']7!) = * & there exists some [y] € [XY, Z], such that [z] -
[2']7 =2 ().
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4. If i*([2]) = i*([2']), then there are maps ¢ ~ z, ¢/ ~ 2’ such that ¢|y = ¢'|y. (use HEP)
Define

z:XX = Z

d(x,1—2t) t<1/2
c(z,2t—1) t>1/2

(z,t) —

we have [c] = [] - [z].
5. Let G := [2CY, Z], H := Im(Zq*). Suy gives the right action x of H on G. It is different
from the usual product - (given by vsc,) on G:

Uscy :ZCf — cho \/ECfl
(1) (¢,2t)o t<1/2
’ (c,2t —1); t>1/2
Sug : XCp — X0y V 82X
(y707t) ’_> (y7 Oﬂt)
(x,2s,t) € XCf s<1/2
(7,25 —1,t) € 22X s>1/2

(z,s,t) —

And we have (gxh)- (¢’ xh') = (g-9') * (h- '), which is equivalent to commutativity of

diagram below.
/ x

ECf\/22 ECfO\/ECfl
Wx W
%Cfo VECy, VXV X2X,

Verify the commutativity:

C; = XCf, VECs, VE> X, V52X,

(yOt)H{(y,o [2t), t<1/2
(y,0,2t — 1), t>1/2
(z,2s,2t), € XCy, §<1/2,t<1/2
5D (2,25 — 1,2t), € 22X, s>1/2,t<1/2
o (z,2s,2t — 1), € XCf, 5s<1/2,t>1/2
(z,2s — 1,2t — 1), € 22X, s>1/2,t>1/2

Final step:

g-h=(gx1)-(Axh)=(g-1)*(1-h)
=1-g)x(h-1)=(1xh)-(gx1)=h-yg

O

Lemma 5.8. Assume X,Y,Z are path-connected and well-pointed. (dual version of lemma )
We have long exact sequence for any f: X — Y: (in category Set*/)

- [2,9X], 25 (z,aY], 2 (2, P 25 (2, X), I 12,7,

And we have following:
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1. [Z,QY ). acts from right on [Z, Pyl,.

2. ju [ Z,QY ], — [Z, Pfl. is a map between right [Z, QY] -sets.

3. j«([y]) = 3« ([¥']) iff exists some [z] € [Z, 02X ]« such that [y] = Qf([2]) - [v'].
4. p«([2]) = p«([2]) iff exists some [y] € [Z,QY ], such that [z] = [¢] - [y].

5. Im(Qs : [Z,9%Y ], — [Z,QPf].) is central subgroup of [Z, QPf]..

Consider lemma [5.8| with f =i : F}, < E is a obtained from a Hurewicz fibration p : E — B.

Lemma 5.9. If there is a surjective Hurewicz fibration p : E — B between spaces with every point
is well-pointed, and B is path-connected, then there are functors Ag , : m<1(E) — Ho(TOP*/) re-
stricts to give group homomorphisms w1 (E, e) — Auty,crop+/)(Fe) (where Fe is the path-connected
component of Fyey containing e) and Ap p : m<1(B) — Ho(TOP) satisfying

ng(E) 7rSl(?) 7TS1(B)

Ho(TOP*/) —~— Ho(TOP)

commutes up to a natural transformation n.

Proof. Construction of the two functors:

AB,p : 7T§1(B) — HO(TOP)
b Fy:=p (b)
[@:b~b]— [at(—,1): F, — F)

where ot is given by:

Fb X {0} g4

Fyx T - wx I

[e%

AE,p 3 7TS1(E) — HO(TOP*/)
e (Fe,e)
[yrexe]m= [yF(=1): (Fe,e) = (F,€)]

where Fe is path-connected component of Fj,.) containing e, and ~T is given by:

F, x{0}tu{e} xI — E

/—>
FQXI *XIWB

n is defined by ne : Fe < Fp(e)-
Naturality is come from v ~ (pov)¥|g, «x1 rel F. x {0}. (notice that natural transformation {7}

are maps in Ho(TOP))
O

Use Agple : m1(E, €) = Autgorop+/)(Fe) in lemmals.9/and composition [S™, Fel. X [Fe, Fels —
[S™, F.]« we obtain an 1 (F, e) action on [S™, F.|. = m,(Fe).

Lemma 5.10. Assume (Y, o) s an path-connected well-pointed space, let v : Y — * be the trivial
fibration, the w1 (Y, yo) action on m,(Y,yo) induced by Ay, is equivalent to the m (Y, yo) action on
7 (Y, 90) in theorem
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Proof.

Notice that the map fa is homotopically unique.
O

Theorem 5.11. Long exact sequence of a Hurewicz fibration (F,e) = (E,e) EN (B,b) ending at
1 (B7 b)
—[8%, Q" F], —=» [S°, Q"E] e, (8%, Q" 1p], &5 (S0, Q" LR, —
(8%, QF), 2 [$°,QE], £ [$9, P,
(=+[8°% Fl. = [S° El.)

is an exact sequence of w1 (E,e)-groups and therefore w1 (F, e)-groups.
In more detail, the following statement holds:
1. For g’ € m(F,e) and x € mp(Fe), §' n (7)) T = tx(9) ny(E) T-

2. For g € mi(E,e) and x € m,(B,b), g 7, () T = P+(9) x(B) T-

3. For g€ m(E,e) and x € m,(F,e) = [SY, Q" F|., t.(g97) = ge.(z).

4. For g e m(E,e) and x € m,(E,e) = [S°, Q"El., p.(97) = gp«(x).

5. For g € mi(E,e) and x € m,(B,b) =[S, Q"1 P]., ¢.(92) = gq.(x).
Proof.

A.1 Proof of Dold-Thom Theorem

A.2 Proof of Homotopy Excision Theorem

Proof. Follow notations in the of the theorem. Define (pointed) the triad homotopy
group for g > 2:

7q(X; A, B) :=my_1(F;

1B,X)

P:

lc,A)

where ip x : B — X, ic,a : C — A and Py is the homotopy fiber
{(y,7) €Y x M(I, 2). | v(1) = f(y)}
of pointed map f:Y — Z. Use long exact sequence of pairs:

T 7Tq(PlB X?‘PlC A) — 7T¢1—1(Pic,A) — Wq_l(PiB,X) — 7Tq—l(PiB,vaic,A) — WQ—Q(P' ) —
P

iC,A
= 7T1(PZB x4 ic, A) — WO(PiC.A) — ﬂ-O(PiB,X>
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and observe that 7, (P, ;) = mg41(X, B) since for any f: S — P;, , we have:

|-l

use the fact f/ € M(SY, M(I, X)) 2 M(STAI X), > f” and S? A I ~ DI with

59— SIAT = DI
— (s,1)
the condition f’(s)(1) = g(s) is equivalent to f”((s,1)) = g(s), that is have a map f is equivalent
to have a map f” : (D%, 8%) — (X, B). With the analogue statement also valid for homotopies

59 x I — Py, we have mg(P;, ) = [S9, % Py o, %] 22 [D9T, 8% X, B] = mg41(X, B).
Rewrites the long exact sequence of pairs above to:

<= g1 (X5 A, B) = me(A,C) = me(X, B) = mq(X; A, B) = mg—1(4,C) —
- = ma(X;A,B) = m(A,C) — m (X, B)
Conditions m > 1,n > 1 guarantees 7o(C) — mo(A) and 7o(C') — mo(B) are surjections.
m > 2 is equlvalent to m1 (A, C) = 0, which implies 7o(C) — mo(A) is bijection.
For z € mo(AN¢ B), we can always find b € mo(B), i, x «(b) =z or a € mo(A),74,x «(a) = « which
becomes b € my(B),ip x «(b) = z or ¢ € m(C),ic,x «(c) =  when mo(C) — m(A) is bijection.
That is equivalent to mo(B) — mo(X) is bijection, which means m (X, B) = 0.
We only need to show that for 2 < g <m+n —2, m,(X; A,B) =0.

With J9=1 := (91971 x I) U (177! x {0}), we have:
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ﬂ—q(PiB,X7PiC,A) = [Iq7alq7 Jq_l; PiB,X7Pic,A7 *}
=[I9AT; 19, OI9NI, J7 AT — X; B, A, %]

:= relative homotopy classes of pointed maps

fI) CB
TINT CA
fI9NT — X satisfying: fOITAT) €
f(017) cC
f(Jq*1 ANI) =x
“relative” means the homotopy & determine the classes
h(I? x 1) CB
q C
satisy: h((OITNT)xI) CA
h(0I1 x 1) ccC

W(JIIAD) x I) =+
(notice that I A I N I? = 919, therefore f(0I1) C AN B =C)

(this is called (relative) homotopy class of maps of tetrads)

=[(I9x I)/K; I x {1}, (0I* x I)/K, (JT* xI)/K — X; B, A, %]
(K :=1I7x {0} U {ig} x I)
=17 (I7x 1) UK, 0I x UK, J7™' x TUK — X; B, A, %]

=17 19 x {1}, I x {1} x I, JT P x TUT? x {0} — X; B, A, 4]
(notice that 17 = 9I9~' x TUT9~! x {0,1})
We can assume that (A4, C') have no relative ¢ < m-cells and (B, C') have no relative g < n-cells.
And we can assume that X has finite many cells since 17 is compact.
For subcomplexes C C A’ C A, where A = e™ U A’ (attaching one cell from A’).
Let X' := A’ Ug B, if the results hold for (X’; A’ B) and (X; A, X'), then it hold for (X; A, B)
since we have map between exact homotopy sequences of triples (A4, A’,C) and (X, X', B):

Tgt1(A, A) —— m(A,C) —— (A, C) —— (A, A) —— 71 (4, C)

iz,q+1J il,{ ia,{ iz,{ il,qll

Tg+1(X, X') —— (X', B) —— my(X,B) —— my(X, X') —— my_1(X', B)

induced by inclusion (A, A’,C) — (X, X’, B). If the result hold for (X'; A’, B) and (X; A, X'),
maps 41,4, 92,4 are isomorphisms when 1 > ¢ > m +n — 3, are epimorphisms when ¢ = m +n — 2.
Notice the 5-lemma says that

if 41 ; and 43 ; are epimorphisms, ¢; ;—; are monomorphism, then ¢3 , is epimorphism.

if 41 4 and 2 ; are monomorphisms, i3 441 are epimorphism, then ¢3 , is monomorphism.

We also have if C C B’ C B with B = B’ U ¢€", the result hold for CW-triads (X’; A, B") and
(X; X', B) where X' = AU¢ B', since (A4, C) — (X, B) factors as (4,C) — (X', B') — (X, B).

Now we can assume that A=C U D™ and B = C U D".

The current goal of proof is to prove any
foth 19 x {1}, I x {1} x I, JT P x TUT? x {0}) = (X; B, A, %)
is nullhomotopic for any g+ 1 with 2 < g+ 1<m+n — 2.
For a € Dom, be 15" We have inclusions of based triads:
(A; A, A—{a}) = (X — B} X — {b}, X — {a,b}) < (X; X — {b}, X — {a}) = (X; 4, B)
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The first and the third induces isomorphisms on homotopy groups of triads since B is a strong
deformation retract of X — {a} in X and A is a strong deformation retract of X — {b} in X.
m(A; A, A — {a}) = 0 since m (A, A — {a}) = 7. (A, AN (A — {a})) are isomorphisms.

Current goal : choose good a,b to show f regarded as a pointed traid map to (X; X — {b}, X —
{a}) is homotopic to a map

frortt 1t {1y x I 19 x {1}, JTEx TUTY x {0}) = (X — {b}; X — {b}, X — {a,b},*)
if2<g+1<m-+n-—2.

Note. We want to homotopically remove some point f~1(b), first we may want to construct some
Uryssohn function u separating f~1(a) U J9! x TUI9 x {0} and f~1(b) and construct homotopy
of cube h™ : (r,s,t) — (r, (1 — u(r,s)t)s) wishing that f(h™(r,s,1)) would miss b. The problem
in this method is that points f~!(b) in the cube would be homotopically replaced by other points.
Since our desire homotopy does not change the first ¢ coordinates of the cube, we want to separate
p(p(f~Ha))) UJTt x I and p~(p(f~1(b))) (where p : I9 x I — I?). Our problem is to find
suitable a, b such that p(f~1(a)) Np(f~1(b)) = 0.

We use manifold structure on D" and D™ to achieve it, now we homotopically approximate f
by a map g which smooth on f_l(Dgl/2 u D’<‘1/2).

Let U., = f~Y(D™2. U D",), Use smooth deformation theorem to construct smooth map
(for any 0 < €) g’ : Uczyy — D%y, U DZ;,, with homotopy hy : 9 =~ flu_,,, (and bound
|g'(x) — f(z)| < € for any © € U~y) and take partition of unity {p,p’} with subcoordinates
{I‘Hl - U<1/2, U<3/4}, we have:

g:=pf+pd
hy g~ frel (177" — Ucsa)
ho : [ x T 5 X
(z,t) = p(2) f(2) + p'(2) 1 (2, t)

with scalar multiplication and addition is already defined on smooth structure on Dy /aU D2, Jar

We could assmue that g(1971 x {1} x I) N D%y, = () (which implies g is a map of tetrads

to (X;X — {b}, X — {a},*)) and g(I? x {1}) N D7, ,, = 0 since fI7t x {1} x I) € A and
f(I% x {1}) C B and we can always tighten the bound ¢, (Similar argument also hold for hy, then

we have hs : g ~ f as homotopy between maps of tetrads.)

Use the manifold structure to find good (a, b):
V= gil(Dzll/Q) X gil(Dzl/z) is a sub-manifold of I2(¢+1). Consider W := {(v,v) € V | p(v) =
p(v')}, which is the zero set of smooth submersion (v,v") — p(v) — p(v’). W is smooth manifold
with codimension ¢. Therefore the map (g,g) : W — D?1/2 X D21/2 is smooth map between
manifolds of dimension ¢ + 2 and m + n. The map is not surjection since g+ 2 < m + n. Then we

have (a,b) ¢ (g,9)(W) (that is, p(g~"(a)) N p(g~"(b)))-

Since g(197 ! x {1} xI)NDZ, ,, = D and g(J9~! x I)NDZ, ,, = 0, we have g(dI?xI)NDZ, ,, = 0.

By Uryssohn’s lemma, we have u : [9 — [ separating p(g~!(a)) U dI? and p(g~—1(b)). Finally we
have:

B I0xIxI—I9x]
(ry8,t) = (r, (1 —u(r)t)s)

and h := go K/, f' := h(—,1). f/(I?"') N {b} = 0 since if I(r,s) € I? x I, f'(r,s) = b, then
b=g(r,(1—u(r))s) = g(r,0) = x leads to contradiction.
Last step is to check that h is a homotopy between maps

(I97L 1970 s {1y x I, 19 x {1}, J97 P x TUT9 x {0}) = (X; X — {b}, X — {a},*)
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Since g is, go I’ is too.
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