A note on CW complexes and homotopy theory

Cloudifold

May 4, 2025

Basic Definitions and Lemmas 0

Definition 0.1. A **CW-complex** is a space constructed by successively attaching cells: For $n \in \mathbb{N}, n \geq 0$, there are maps $\{\varphi_i : S^{n-1} \to X^{n-1}\}_{i \in I_n}$ (called characteristic maps). The way to construct X^n (called *n*-skeleton of X) is :

(starting from $X^{-1} = \emptyset$, if we start from $X^{-1} = A$, we say (X, A) is a **relative CW-complex**)

and the resulting CW-complex X is $\varinjlim \{X^0 \to \cdots \to X^n \to X^{n+1} \to \cdots\}$. The images of $D_i^{\circ n}$ in X is called open cell e_i^n of X.

Definition 0.2. A is a subcomplex of CW-complex X iff for any open cell e_i^n of X, A satisfy: $A \cap e_i^n \neq \emptyset \implies e_i^n \subseteq A.$

Pair of X and subcomplex A : (X, A) is called a CW-pair.

Definition 0.3. The Infinite Symmetric Product of a pointed space (X, x_0) is colimit of its *n*-th Symmetric Products ($\operatorname{SP}^n X := (\prod_{\{0,1,\dots,n-1\}} X)/S_n$) :

$$\varinjlim \{ \dots \hookrightarrow \operatorname{SP}^n X \hookrightarrow \operatorname{SP}^{n+1} X \hookrightarrow \dots \} \{ x_1, \dots, x_n \} \mapsto \{ x_0, x_1, \dots, x_n \}$$

Definition 0.4. For $n \ge 1$, a map between pairs $f: (X, A) \to (Y, B)$ is an *n*-equivalence if:

- $f_*^{-1}(\operatorname{Im}(\pi_0 B \to \pi_0 Y)) = \operatorname{Im}(\pi_0 A \to \pi_0 X)$
- For all choices of basepoint a in A,

$$f_*: \pi_q(X, A, a) \to \pi_q(Y, B, f(a))$$

is isomorphism for $1 \le q \le n-1$ and epimorphism for q = n.

Definition 0.5. A pair (X, A) of topological spaces is *n*-connected if $\pi_0(A) \to \pi_0(X)$ is surjection and $\pi_q(X, A) = 0$ for $1 \le q \le n$.

Definition 0.6. For topological spaces $A \hookrightarrow X$, A is a strong deformation retract of a neighbor borhood V in X if: $\exists h: V \times I \to X$ such that $\forall x \in V, h(x,0) = x$ $h(V,1) \subseteq A$ $\forall (a,t) \in A \times I, \ h(a,t) = a$

Definition 0.7. For topological spaces $i: A \hookrightarrow X$, A is a **deformation retract** of X if: $\exists h: X \times I \to X$ such that $\forall x \in X, h(x,0) = x$ h(X,1) = A $\forall (a,t) \in A \times I, \ h(a,t) = a$ (That is, there are retraction $r: X \to A$ and homotopy $h: \operatorname{id}_X \simeq i \circ r \operatorname{rel} A$) And r := h(-, 1) is called a **deformation retraction**.

Definition 0.8. For topological spaces $A \hookrightarrow X$, a neighborhood V of A is deformable to A if: $\exists h: X \times I \to X$ such that $\forall x \in X, \ h(x,0) = x$ $h(A \times I) \subseteq A, h(V \times I) \subseteq V.$ $h(V,1) \subseteq A$

Definition 0.9. For a topological group G, a relative G-(equivariant) CW-complex (X, A) is a space constructed by successively attaching G-equivariant cells $G/H \times D^n$ on a G-space A: For $n \in \mathbb{N}, n \geq 0$, there are maps $\{\varphi_i : G/H_i \times S^{n-1} \to X^{n-1}\}_{i \in I_n}$ (called characteristic maps) where each H_i is closed subgroup of G and G acts trivially on D^n , S^{n-1} . The way to construct X^n (called *n*-skeleton of X) is:

(starting from $X^{-1} = A$ where A is an G-space)

The resulting X is $\varinjlim \{X^{-1} \to X^0 \to \cdots \to X^n \to X^{n+1} \to \cdots\}$. The images of $G/H_i \times \overset{\circ}{D_i^n}$ in X is called open *n*-cell of type G/H_i . ϕ_i is called the attaching map and $\varphi_i(G/H_i \times S^{n-1})$ is called the boundary of $\phi_i(G/H_i \times D^n)$. If $A = \emptyset$, then X is called a G-(equivariant) CW-complex.

A criterion of weak homotopy equivalence:

Lemma 0.1. The following on a map $e: Y \to Z$ and any fixed $n \in \mathbb{N}$ are equivalent:

- 1. For any $y \in Y$, $e_* : \pi_q(Y, y) \to \pi_q(Z, e(y))$ is monomorphism for q = n and is epimorphism for q = n + 1.
- 2. (HELP of (D^{n+1}, S^n)) Given maps $f: D^{n+1} \to Z, g: S^n \to Y$ and homotopy $h: f \circ i \simeq e \circ g$:

then we have extension $g^+: D^{n+1} \to Y$ of g and $h^+: f \simeq e \circ g^+$:

$$\begin{array}{c} S^n & \longrightarrow D^{n+2} \\ g \\ \downarrow & & \downarrow \\ Y & \stackrel{g^+}{\longleftarrow} & \downarrow \\ Y & \stackrel{e^+}{\longrightarrow} & Z \end{array}$$

3. Conclusion above holds when the given h is $id_{f \circ i}$.

Proof. Trivially 2. implies 3.

Our first goal : 3. implies 1.

Fix $n \in \mathbb{N}$. $\pi_n(e)$ is monomorphism:

For n = 0, 3 says if we have path $e(y) \simeq e(y')$ then we have path $y \simeq y'$. That is to say e can not map two path-connected component to one.

For n > 0, 3. says if $e \circ g$ is nullhomotopic, then $g : S^n \to Y$ could be extend to $g^+ : D^{n+1} \to Y$, which can be used to construct nullhomotopy of g.

Fix $n \in \mathbb{N}$. $\pi_{n+1}(e)$ is epimorphism: For $[f] \in \pi_{n+1}(Z, e(y)) \cong [D^{n+1}, S^n; Z, e(y)]$, let $g := s \mapsto y$, the extension g^+ satisfy $e_*([g^+]) = [f]$, that proves e_* is epimorphism.

Second goal : 1. implies 2.

Fix g, f, h in the condition of 2. first. And observe that $\pi_n(Y, y) = [S^n, *; Y, y], \ \pi_{n+1}(Y, y) = [D^{n+1}, S^n; Y, y].$

There is a map $f': (D^{n+1}, S^n) \to Z$ homotopic to f defined by $f' = f \circ b(-, 1)$ where

$$\begin{array}{ll} \phi: CS^n \times I \to CS^n \\ \hline (\overline{(x,t)},s) \mapsto \begin{cases} \overline{(x,1-2t)} & t \leq \frac{s}{2} \\ \overline{(x,\frac{t-s/2}{1-s/2})} & t \geq \frac{s}{2} \end{cases} \end{array}$$

(recall that $D^{n+1} \simeq CS^n$) Therefore we can replace f with f'. Using the epimorphism leads to $h': e \circ g^{+'} \simeq f'$, using the monomorphism leads to $r: g^{+'} \circ i \simeq g$. Construct $g^+:=a(-,1)$ using

$$\begin{aligned} a: CS^n \times I \to Z \\ (\overline{(x,t)},s) \mapsto \begin{cases} r(x,s-2t) & t \leq \frac{s}{2} \\ g^{+\prime}(x,\frac{t-s/2}{1-s/2}) & t \geq \frac{s}{2} \end{cases} \end{aligned}$$

And that is the end of the proof:

	-	-	-	
L				
L				
L				
L				

1 Right Notion For Spaces

Theorem 1.1. Homotopy Extension and Lifting property: A : a topological space $X : result of successively attaching cells on A of dimensions <math>0, 1, \ldots, k \ (k \le n)$ $e : Y \to Z : n$ -equivalence $g : A \to Y, f : X \to Z$ $h : f|_A \simeq e \circ g$

$$\begin{array}{ccc} A & \longrightarrow & X \\ g & & & \\ g & & & \\ Y & \xrightarrow{h} & & \\ Y & \xrightarrow{e} & Z \end{array}$$

Then there exists $g^+ : X \to Y$ extends $g \ (g^+|_A = g)$ and $h^+ : X \times I \to Z$ extends $h, h^+ : f \simeq e \circ g^+$

$$\begin{array}{c} A & \longleftrightarrow & X \\ g & g^{+} & \downarrow^{j} \\ Y & \overbrace{e}{} & Z \end{array}$$

Proof. It suffices to prove the case $A = S^{k-1}, X = D^k$, *e* is inclusion. (replace Z by M_e) Apply HEP of (D^k, S^{k-1}) :

 $f' := \hat{h}(-, 1)$, replace f with f' the diagram would be strictly commute. Therefore, f' is map of pairs $(D^k, S^{k-1}) \to (Z, Y)$, $k \leq n$ implies f' is nullhomotopic, suppose $h^+ : D^k \times I \to Z$ is the nullhomotopy, then $g^+ := h^+(-, 1)$ satisfy $g^+(D^k) \subseteq Y$.

Note. In HELP, at condition Y = Z and e = id, HELP says (X, A) have HEP

Corollary 1.2. If

A: a topological space X: result of successively attaching cells on A of any dimensions Then, (X, A) have HEP.

Theorem 1.3. If X is an CW-complex, $e: Y \to Z$ is an n-equivalence, Then $e_*: [X,Y] \to [X,Z]$ is a bijection if dim X < n, and a surjection if dim X = n.(Also valid for pointed case)

Proof. Surjectivity: Apply HELP of (X, \emptyset) $((X, x_0)$ for pointed case) to obtain $e_*[g^+] \simeq [f]$:

Injectivity (dim X < n): Suppose $[g_0], [g_1] \in [X, Y], e_*[g_0] = e_*[g_1].$ Let $f : e \circ g_0 \simeq e \circ g_1$ Apply HELP to $(X \times I, X \times \partial I)$:

Corollary 1.4. If X is a CW-complex, $e : Y \to Z$ is weak homotopy equivalence, then $e_* : [X,Y] \to [X,Z]$ is bijection.

1.1 CW-approximation

This subsection shows that CW-complexes encode all weak-homotopy types of TOP.

Definition 1.1. A **CW-approximation** of $(X, A) \in \text{Top}(2)$ is a CW-pair $(\widetilde{X}, \widetilde{A})$ and a weak homotopy equivalence of pairs $\varphi : (\widetilde{X}, \widetilde{A}) \to (X, A)$.

Theorem 1.5. (Existence of CW-approximation) If X is path-connected pointed space (0-connected), then there is a CW-approximation $(\tilde{X}, *) \xrightarrow{\phi} (X, *)$. If X is n-connected then \tilde{X} could be chosen to satisfy $\tilde{X}^n = *$. (Moreover, each characteristic map of X is pointed) **Proof.** If X is n-connected, then $\phi_n : Y^n := * \to X$ is n-equivariance. Assume inductively that we already have m-equivalence $Y^m \xrightarrow{\phi_m} X$ $(m \ge n)$, Our goal is construct Y^{m+1} and $\phi_{m+1} : Y^{m+1} \to X$.

Let

$$f_m^+ : \bigoplus_{a \in A} \mathbb{Z}_a \twoheadrightarrow \ker(\phi_{m*}) \subseteq \pi_m(Y^m)$$

be a free resolution of ker (ϕ_{m*}) $(\coprod_{a \in A} \mathbb{Z}_a \text{ if } m = 1)$, and obtain a (unique up to homotopy) map $f_m : \bigvee_{a \in A} S_a^m \to Y^m$ defined by $f_m |_{S_a^m} := k_a$ where $[k_a] = f_m^+(1_a) \in [S^m, Y^m]_*$. We have: (since $[\phi_m \circ f_m] = 0$)

 $C_{f_m} \text{ is a CW-complex with dim} = n + 1 \text{ with } m\text{-skeleton } Y^m. \quad \varphi_{m+1*} : \pi_m(C_{f_m}) \to \pi_m(X) \text{ is isomorphism, but } \varphi_{m+1*} : \pi_{m+1}(C_{f_m}) \to \pi_{m+1}(X) \text{ is not necessarily an epimorphism.}$ Define the set $B := \pi_{m+1}(X) - \varphi_{m+1*}(\pi_{m+1}(C_{f_m})) \text{ and } Y^{m+1} := C_{f_m} \lor (\bigvee_{b \in B} S_b^{m+1}).$ Define ϕ^{m+1} by $\phi^{m+1}|_{C_{f_m}} := \varphi_{m+1}$ and $\phi^{m+1}|_{S_b^{m+1}} := r_b$ where $[r_b] = b \in [S^{m+1}, X]_*.$

 $\widetilde{X} := \varinjlim_m \{ Y^0 \hookrightarrow \dots \hookrightarrow Y^m \hookrightarrow Y^{m+1} \hookrightarrow \dots \}, \text{ and } \phi = \varinjlim_m \phi_m$

If X is not path-connected, construct CW-approximation for each path-connected component.

Note. The proof of existence of CW-approximation uses homotopy excision theorem (CW-triad version). Proof of CW-triad version does not need CW-approximation. There is no circular argument.

Proposition 1.6. For any pair (X, A), there exists CW-approximation $\phi : (\widetilde{X}, \widetilde{A}) \to (X, A)$.

Proof. Construct $\phi_A : \widetilde{A} \to A$ first and use analogue method in proof of theorem 1.5 with $Y^0 := \widetilde{A}$.

Lemma 1.7. φ, ψ are CW-approximations of $X, Y, f: X \to Y$, then

commutes up to homotopy, and \tilde{f} is unique up to homotopy.

Proof. Directly from $\psi_* : [\widetilde{X}, \widetilde{Y}] \to [\widetilde{X}, Y]$ is bijection.

Theorem 1.8. φ, ψ are CW-approximations of $(X, A), (Y, B), f : (X, A) \to (Y, B),$ then

$$\begin{array}{c} (\widetilde{X},\widetilde{A}) & \stackrel{\varphi}{\longrightarrow} (X,A) \\ \exists \widetilde{f} \\ \downarrow & \qquad \qquad \downarrow f \\ (\widetilde{Y},\widetilde{B}) & \stackrel{\psi}{\longrightarrow} (Y,B) \end{array}$$

commutes up to homotopy, and \tilde{f} is unique up to homotopy.

Proof. Apply Lemma 1.7 to obtain map $\widetilde{f}_A : \widetilde{A} \to \widetilde{B}$ and homotopy $h : \psi|_{\widetilde{B}} \circ \widetilde{f}_A \simeq f \circ \varphi|_{\widetilde{A}}$ Use HELP of $(\widetilde{X}, \widetilde{A})$ to extend it:

 ψ_* is bijection implies the uniqueness up to homotopy of \tilde{f} .

Theorem 1.9. (Whitehead's Theorem)

Every n-equivalence between CW-complexes whose dimension is lower than n, is homotopy equivalence. alence. Every weak homotopy equivalence between CW-complexes is homotopy equivalence.

Proof. $e: Y \to Z$ induce bijections $[Y, Y] \to [Y, Z]$ and $[Z, Y] \to [Z, Z]$, $[f] = e_*^{-1}[\operatorname{id}_Z]$ implies $[e \circ f] = [\operatorname{id}_Z]$ and $[e \circ f \circ e] = [e]$ ($[f \circ e] = e_*^{-1}[e] = [\operatorname{id}_Y]$).

Corollary 1.10. *CW*-approximation is unique up to homotopy.

Example 1.1. Polish circle (Warsaw circle) : closed topologist's sine curve. It is n-connected forall n but not contractible.

Definition 1.2. A cellular map between CW-pairs is $g: (X, A) \to (Y, B)$ such that $g(A \cup X^n) \subseteq B \cup Y^n$.

Theorem 1.11. For any map between CW-pairs $f : (X, A) \to (Y, B)$ there exists a cellular map g such that $g \simeq f$ rel A

Proof. Construct g inductively: Start from $A \cup X^0$: take paths $\gamma_i : f(x_i) \simeq y_i$, where y_i is any point in Y^0 and $x_i \in X^0 - A$. Construct $h_0 : (X^0 \cup A) \times I \to Y : h_0|_A(a,t) := f(a), h_0|_{X^0 - A}(x_i,t) := \gamma_i(t)$. This is a homotopy from f to $g_0 := h_0(-, 1) : A \cup X^0 \to B \cup Y^0$ Inductive step:

Assume $g_n : A \cup X^n \to B \cup Y^n$ and homotopy $h_n : f|_{A \cup X^n} \simeq g_n$ is given, try to construct g_{n+1} : For each characteristic map $\varphi_i : S^n \to X^n$, take the resulting cell map $\varphi_i^+ : D^{n+1} \to X^{n+1}$ and use HELP of (D^{n+1}, S^n) :

Glue all $g_{n+1,i}$ and $h_{n+1,i}$ to produce g_{n+1} and $h_{n+1}: f|_{A\cup X^{n+1}} \simeq g_{n+1}$. Final stage:

Maps g_n determine a cellular map $g: X \to Y$ since X has the final topology determined by skeletons.

Corollary 1.12. If X is a pointed CW-complex, then the inclusions $X^{n+1} \hookrightarrow X^{n+2} \hookrightarrow \cdots \hookrightarrow X$ induce $\pi_n(X^{n+1}) \cong \pi_n(X^{n+2}) \cong \cdots \cong \pi_n(X)$.

Proof. For $k \ge 1$, $X^{n+k} \hookrightarrow X^{n+k+1}$ induces epimorphism $\pi_n(X^{n+k}) \twoheadrightarrow \pi_n(X^{n+k+1})$ since every $f: (S^n, *) \to (X^{n+k+1}, *)$ is homotopic (rel *) to an $g: (S^n, *) \to (X^n, *) \hookrightarrow (X^{n+k}, *)$. Now we want to prove it is monomorphism, that is, $i_*[f] = 0 \implies [f] = 0$ If $h: (S^n, *) \times I \to X^{n+k+1}$ is a nullhomotopy in X^{n+k+1} of a map $f: (S^n, *) \to (X^{n+k}, *) \hookrightarrow (X^{n+k+1}, *),$ then $h: (CS^n, S^n) \to (X^{n+k+1}, X^{n+k})$ is homotopic (rel S^n) to an $h': (CS^n, S^n) \to (X^{n+k}, X^{n+k}),$ which is equivalent to $h': S^n \times I \to X^{n+k}$ with $h(S^n, 1) = *, h(*, t) = *, h|_{S^n \times \{0\}} = f$. \square

Lemma 1.13. If (X, A) is CW-pair and all cells of X - A have dim > n, then (X, A) is nconnected.

Proof. For each $q \leq n$, and each $[f] \in \pi_q(X, A), f \simeq g \operatorname{rel} S^{q-1}$ where g is an cellular map. (use theorem 1.11) $\pi_q(X, A) \ni [g] = 0$ since $g(S^{n-1} \cup e^n) = g(D^n) \subseteq A \cup X^n = A$.

Operation of CW-complexes 1.2

We show that Product, Smash Product of CW-complexes and Quotient of CW-pairs (with compact-open topology) are CW-complexes. (Compact-open topology is the right topology on CW-complexes)

Product of CW-complexes:

Example 1.2. Product topology of two CW-complexes does not coincide with the final topology (union topology):

 $X \text{ (star of countably many edges)} : X = X^1 = \bigvee_{n \in \omega} I_n$ $Y \text{ (star of } \omega^{\omega} \text{ many edges)} : Y = Y^1 = \bigvee_{f \in \omega^{\omega}} I_f ((I_n, 0) \cong (I_f, 0) \cong (I, 0))$ Consider subset H of $X \times Y$: $H := \{(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}) \in I_n \times I_f \mid n \in \omega, f \in \omega^{\omega}\}.$

H is closed under the final topology since every cell of $X \times Y$ contains at most one point of H. But closure of H contains (0,0) at product topology:

Let $U \times V$ be an open neighborhood (at product topology) of (0,0), let $g: \omega \to \omega - 0$ be an increasing function such that for all $n \in \omega, [0, \frac{1}{q(n)}) \subseteq U \cap I_n$, let $k \in omega$ be sufficiently large that $\frac{1}{g(k)+1} \subseteq V \cap I_g$, then $\left(\frac{1}{g(k)+1}, \frac{1}{g(k)+1}\right) \in U \times^{q(k)} V \cap H$.

Proposition 1.14. X and Y are CW-complexes, $X \times Y$ is CW-complex if

X or Y is locally compact

or

both X and Y have countably many cells.

Another way to realize $X \times Y$ as CW-complex is to change its topology to the compactly generated topology $k(X \times Y)$:

Definition 1.3. For subspace A of X, A is compactly closed if

$$\forall \text{ compact space } K$$

$$\forall \text{ continuous } g: K \to X$$

$$g^{-1}(A) \text{ is closed in } K$$

Definition 1.4. X is k-space if any compactly closed subset is closed.

Definition 1.5. X is weak Hausdorff if

 \forall compact space K \forall continuous $g: K \to X$ q(K) is closed in K

Definition 1.6. The k-ification of a space X is defined by: $k(X) := (X, \tau)$ where $\tau = \{X - A \mid A \text{ is compactly closed set}\}$

Definition 1.7. X is compactly generated space if it is k-space and weak Hausdorff.

Note. If X is weak Hausdorff, then $A \subseteq X$ is compactly closed iff

$$\forall \text{ compact subspace } K \subseteq X$$
$$A \cap K \text{ is closed in } X$$

If X is a CW-complex, then the topology defined on k(X) automatically coincide with the final topology induced by its CW-complex structure. We have CW-complex structure of $k(X \times Y)$ is given by:

$$\begin{array}{c} \partial I^n \times I^m \cup I^n \times \partial I^m \longrightarrow X^{n-1} \times Y^m \cup X^n \times Y^{m-1} \\ \\ \downarrow \\ I^n \times I^m \longrightarrow X^n \times Y^m \end{array}$$

Furthermore, the k-ification is right adjoint of the inclusion functor i:

$$\mathbf{TOP_{CptGen}} \underbrace{ \downarrow }_{k(-)} \mathbf{TOP_{weakHaus}}$$

This allows us to define the CW-complex structure on any limit of CW-complexes: $\varprojlim_i X_i \approx \lim_i k(X_i) \approx k(\lim_i X_i) \ (X \approx k(X) \ \text{and right adjoint preserve limits}).$

Note. Category of CW-complexes is not cartesian closed, but category of compactly generated spaces $\mathbf{TOP}_{\mathbf{CG}}$ is. And its pointed version $\mathbf{TOP}_{\mathbf{CG}}^{*/}$ have based exponential law: $\operatorname{Hom}(X \wedge Y, Z) \approx \operatorname{Hom}(X, \operatorname{Hom}(Y, Z))$.

Quotient of CW-pair:

Proposition 1.15. For CW-complex X and subcomplex A, the Quotient space X/A have a CW-complex structure induced by X and A.

Proof. Suppose the characteristic maps of X are indexed by $\{I_n\}_{n\in\mathbb{N}}$ and of A are indexed by $\{I'_n\}_{n\in\mathbb{N}}$ $(I'_n \subseteq I_n)$. Then the characteristic maps of X/A are indexed by $\{K_n\}_{n\in\mathbb{N}}$, which defined below:

 $K_0 := (I_0 - I'_0) \cup \{i_0\}$ where i_0 is an arbitrary element in I'_0 $K_n := I_n - I'_n$ for n > 0.

Verify the maps determine the CW-complex structure:

Smash product of CW-complexes:

Proposition 1.16. If (X, x_0) , (Y, y_0) are pointed CW-complexes with both countably many cell, and $X^{r-1} = \{x_0\}, Y^{s-1} = \{y_0\}$, then $X \wedge Y := X \times Y/X \vee Y$ is an (r + s - 1)-connected CW-complex.

Proof. $X \times Y$ is CW-complex with cells of the form $e_{i,X}^n \times \{y_0\}, \{x_0\} \times e_{j,Y}^m$ or $e_{i,X}^n \times e_{j,Y}^m$ for $n \geq r, m \geq s$. Cells of the first two forms are contianed in $X \vee Y$, therefore $(X \wedge Y)^{r+s-1} = *$. **Corollary 1.17.** If X is a pointed CW-complex, then $\Sigma^n X$ is an (n-1)-connected CW-complex.

1.3 Properties of Infinite Symmetric Product

Functoriality:

Pointed map $f: X \to Y$ induces

$$f_{n} : \operatorname{SP}^{n} X \to \operatorname{SP}^{n} Y$$

$$\{x_{1}, \dots, x_{n}\} \mapsto \{f(x_{1}), \dots, f(x_{n})\}$$

$$\longrightarrow \operatorname{SP}^{n} X \longrightarrow \operatorname{SP}^{n+1} X \longrightarrow$$

$$\downarrow f_{n} \qquad \qquad \qquad \downarrow f_{n+1}$$

$$\longrightarrow \operatorname{SP}^{n} Y \longrightarrow \operatorname{SP}^{n+1} Y \longrightarrow$$

Which induces map SP $f : SP X \to SP Y$. And Functorial properties are directly from the constructions above.

$$\operatorname{SP}(X_1 \lor X_2) \approx \operatorname{SP}(X_1) \times \operatorname{SP}(X_2)$$
, the homeomorphism is given by:
 $\operatorname{SP}(X_1) \times \operatorname{SP}(X_2) \leftrightarrows \operatorname{SP}(X_1 \lor X_2)$
 $(\{a_1, a_2, \cdots, a_k\}, \{b_1, b_2, \cdots, b_m\}) \mapsto \{a_1, a_2, \cdots, a_k, b_1, b_2, \cdots, b_m\}$

Commute with directed colimit:

Suppose P is a directed poset (that is $\forall x, y \in P, \exists z \in P, x \leq z, y \leq z$) and X_i are pointed spaces indexed by P satisfying $i \leq j \implies X_i \subseteq X_j$.

Then $\operatorname{SP}^{n}(\varinjlim_{i} X_{i}) \approx \varinjlim_{i} (\operatorname{SP}^{n} X_{i})$

(Proof is obtained by showing that $SP^n f$ is continuous iff f is, which implies final topology on $\varinjlim_i (SP^n X_i)$ agree on $SP^n(\varinjlim_i X_i)$)

Suppose $i : A \hookrightarrow X$ is an pointed inclusion, then SP $i : SP A \hookrightarrow SP X$ is also inclusion. Furthermore, if A is open (or closed) in X, then SP A is open (or closed) in SP X.

CW-complex structure of SP:

We can have natural CW-complex structure on $\prod_n X$ by applying k(-). following theorems allows us to prove that $SP^n X = \prod_n X/S_n$ have a CW-complex structure.

Definition 1.8. G acts cellularly on a CW-complex X if:

$$\forall g \in G, e_i^n \text{ is open } n\text{-cell (of } X) \\ g(e_i^n) = e_j^n \text{ is open } n\text{-cell (of } X)$$

and $g(e_i^n) = e_i^n$ implies $g|_{e_i^n} = \mathrm{id}_{e_i^n}$.

Lemma 1.18. If G is a discrete group, X is CW-complex with G cellularly act on X. Then X is a G-CW-complex with n-skeleton X^n .

Proof. The goal is to show X^n is obtained from X^{n-1} by attaching *G*-equivariant cells. Since $\coprod_{i \in I_n} Y = I_n \times Y$ (I_n with discrete topology). We have:

G acts cellularly on open *n*-cells implies G acts on I_n . Decomposite I_n into disjoint unions of obrits $\prod_{\alpha \in A} I_{\alpha}$ choose G-isomorphisms

$$G/H_{\alpha} \cong I_{\alpha}$$
$$gH_{\alpha} \mapsto gi_{\alpha}$$

And we have a well-defined G-map.

$$\begin{split} \phi_{\alpha}|_{e^{n}} &: G/H_{\alpha} \times e^{n} \cong I_{\alpha} \times e^{n} \to X^{n} \\ & (gH_{\alpha}, x) \mapsto (gi_{\alpha}, x) \mapsto \phi_{gi_{\alpha}}(x) = g\phi_{i_{\alpha}}(x) \end{split}$$

Since we have $e^n = \overset{\circ}{D^n}$, we obtain the following (by continuity):

$$\phi_{\alpha} : G/H_{\alpha} \times D^{n} \to X^{n}$$

$$(gH_{\alpha}, x) \mapsto g\phi_{i_{\alpha}}(x)$$

$$\phi_{\alpha}|_{S^{n-1}} = \varphi_{\alpha} : G/H_{\alpha} \times S^{n-1} \to X^{n-1}$$

$$(gH_{\alpha}, s) \mapsto g\varphi_{i_{\alpha}}(s)$$

Let $\varphi' := \coprod_{\alpha \in A} \varphi_{\alpha}$ and $\phi' := \coprod_{\alpha \in A} \phi_{\alpha}$ we have:

Verify it is indeed a pushout of G-spaces: f^+ (is already determined uniquely as map between G-sets) is map between G-spaces.

Since X have compactly generated topology, f^+ is continuous on each compact subspace of X implies f^+ is continuous on each compactly closed subspace of X^n , which implies f^+ is continuous on total X^n .

 f^+ is continuous on each closed *n*-cell $\{gH_{\alpha}\} \times D^n$ and f^+ is continuous on X^{n-1} implies f^+ is continuous on each compact subspace. (since each compact subspace intersect finitely with *n*-cells and X^{n-1} (We use X^n is T_2 to construct open cover))

Theorem 1.19. For any topological group morphism $\phi : H \to G$ we have induced functors: pullback action:

$$\begin{array}{c} G-\mathbf{TOP} \xrightarrow{\phi^*} H-\mathbf{TOP} \\ (\alpha(-,-): G \times X \to X) \longmapsto (\alpha(\phi(-),-): H \times X \to X) \\ (f: X \to Y) \longmapsto (f: X \to Y) \end{array}$$

induced action:

$$H-\mathbf{TOP} \xrightarrow{G \times_H -} G-\mathbf{TOP}$$
$$X \longmapsto G \times_H X := (G \times X)/[(g\phi(h), x) \sim (g, hx) | h \in H$$
$$f: X \to Y) \longmapsto (\mathrm{id}_G \times_H f: G \times_H X \to G \times_H Y)$$

Which are adjunctions:

(j

$$H-\mathbf{TOP} \underbrace{\stackrel{G \times_{H^-}}{\longleftarrow}}_{\phi^*} G-\mathbf{TOP}$$

Proof. By G-equivariance, f is determined uniquely by its restriction $f|_{\phi(H)\times_H X}$. And $\tilde{f}: X \to \mathcal{F}$

 $\phi^*(Y)$ uniquely determine a map $\phi(H) \times_H X \to Y$.

Naturality:

$$(hx') \longmapsto (\phi(h), f'(x')) = (e, hf'(x')) \longmapsto \phi(h)f(f'(x)) \longrightarrow \phi(h)f''(f(f'(x)))$$

Proposition 1.20. If (X, A) is relative G-equivariant CW-complex, then (X/G, A/G) is relative CW-complex with n-skeleton X^n/G .

 $\stackrel{\longleftarrow}{\longrightarrow}$

Proof.

Is still pushout since $-/G = 1 \times_G -$, and left adjoint preserves colimits.

Since $k(\prod_n X)$ have CW-complex structure, and S_n (as a discrete group) acts cellularly on it, $k(\prod_n X)$ is an S_n -equivariant CW-complex. Therefore $\operatorname{SP}^n X = k(\prod_n X)/S^n$ is CW-complex. Since $\operatorname{SP} X = \varinjlim \{\operatorname{SP}^1 X \hookrightarrow \cdots \hookrightarrow \operatorname{SP}^n X \hookrightarrow \operatorname{SP}^{n+1} X \hookrightarrow \cdots \}$, $\operatorname{SP} X$ is also a CW-complex.

Pointed homotopy $h: X \times I \to Y$ induces

$$h_n : \operatorname{SP}^n X \times I \to \operatorname{SP}^n Y$$

({x₁,..., x_n}, t) \mapsto {h(x₁, t), ..., h(x_n, t)}

which induces SP $h : SP X \times I \to SP Y$.

Then we observe: $f \simeq g$ implies SP $f \simeq$ SP g, $e: X \to Y$ is homotopy equivalence implies SP e: SP $X \to$ SP Y is, X is contractible implies SPⁿ X and then SP X is.

Theorem 1.21. (Dold-Thom Theorem)

If X is T_2 space and A is closed path-connected subspace of X, and there is neighborhood V deformable to A in X.

Then the quotient map $q : X \to X/A$ induces quasi-fibration $\operatorname{SP} q : \operatorname{SP} X \to \operatorname{SP}(X/A)$, which satisfy $\forall x \in \operatorname{SP}(X/A)$, $(\operatorname{SP} q)^{-1}\{x\} \simeq \operatorname{SP} A$.

Proof. See here.

Corollary 1.22. If X , Y are T_2 spaces and Y is connected, $f : X \to Y$. Then consider $X \to Y \to C_f \to \Sigma X$, the map $p : C_f \to \Sigma X$ induces quasi-fibration $\operatorname{SP} p : \operatorname{SP} C_f \to \operatorname{SP}(\Sigma X)$ with fiber $\operatorname{SP} Y$.

Corollary 1.23. If X is T_2 and path-connected, then for any $q \ge 0$, there is $\pi_{q+1}(\operatorname{SP}(\Sigma X)) \cong \pi_q(\operatorname{SP} X)$.

Proof. CX is contractible implies SPCX is contractible, use the exat homotopy sequence of quasi-fibration to see:

$$\longrightarrow \pi_{q+1}(\operatorname{SP} CX) \longrightarrow \pi_{q+1}(\operatorname{SP} \Sigma X) \xrightarrow{\cong} \pi_q(\operatorname{SP} X) \longrightarrow \pi_q(\operatorname{SP} CX) \longrightarrow$$

Note. The inverse of the isomorphism ∂ above is given by

$$[S^q, \operatorname{SP} X] \ni [g] \mapsto [\Sigma g] \in [S^{q+1}, \Sigma \operatorname{SP} X]$$

 $(\Sigma \operatorname{SP} X \cong \operatorname{SP} \Sigma X)$. Because ∂ is given by:

$$[p \circ Cg] = [\Sigma g] \longleftarrow [Cg] \longleftarrow [g]$$

Corollary 1.24. If X is T_2 space and A is path-connected subspace of X, then the canonical map $SP(X \cup (A \times I)) \rightarrow SP(X \cup CA)$ is a quasi-fibration with fiber SP A.

Theorem 1.25. If X is T_2 space and A is path-connected subspace of X, and $A \hookrightarrow X$ is a cofibration.

Then the quotient map $q : X \to X/A$ induces quasi-fibration $\operatorname{SP} q : \operatorname{SP} X \to \operatorname{SP}(X/A)$, which satisfy $\forall x \in \operatorname{SP}(X/A)$, $(\operatorname{SP} q)^{-1}\{x\} \simeq \operatorname{SP} A$.

Proof. If $A \hookrightarrow X$ is cofibration, then $X \cup CA \simeq X/A$ and $X \cup (A \times I) \simeq X$.

Proposition 1.26. The inclusion $S^1 \to SP S^1$ is homotopy equivalence, therefore $\pi_q(S^1) \cong \pi_q(SP S^1)$.

Proof. $S^1 \simeq S^2 - \{0, \infty\}$ $SP^n S^2 = \{\{a_1, \dots, a_n\} \mid a_i \in \mathbb{C} \cup \{\infty\}\} = \{\prod_{\{a_1, \dots, a_n\}} (z - a_i) \mid a_i \in \mathbb{C} \cup \{\infty\}\}$ where $(z - \infty) := 1$ $SP^n S^2 = \{f \in \mathbb{C}[z] - \{0\} \mid \deg(f) \le n\} = \mathbb{CP}^n$

 $SP^{n}(S^{2} - \{0, \infty\}) = \{f \in \mathbb{C}[z] - \{0\} \mid \deg(f) \le n, f_{n} \ne 0, f_{0} \ne 0\} = \mathbb{C}^{n} - \mathbb{C}^{n-1} \times 0 = \mathbb{C}^{n-1} \times (\mathbb{C} - 0)$

it have the same homotopy type of S^1

Corollary 1.27. $\pi_q(\operatorname{SP} S^n) = \mathbb{Z}$ if q = n, otherwise $\pi_q(\operatorname{SP} S^n) = 0$. (use corollary of 1.21 to see $\pi_{q+1}(\operatorname{SP} \Sigma X) \cong \pi_q(\operatorname{SP} X)$)

2 Homology Groups

2.1 Reduced Homology Groups

Definition 2.1. For a path-connected pointed CW-complex X, define its *n*-th reduced homology group for $n \ge 0$:

$$\tilde{H}_n(X) := \pi_n(\operatorname{SP} X)$$

Note. All reduced homology groups are abelian since $\tilde{H}_n(X) \cong \tilde{H}_{n+1}(\Sigma X)$. Thus, we can extend the definition above to those X which does not necessarily be path-connected.

As SP, \tilde{H}_n also satisfy functoriality. Furthermore, \tilde{H}_n maps homotopic maps $f \simeq g$ to identical maps $f_* = g_*$. (SP maps homotopic maps to homotopic maps)

Exact Property:

Proposition 2.1. For any pointed map between CW-complexes $f : X \to Y$, we have an exact sequence:

$$\tilde{H}_n(X) \xrightarrow{f_*} \tilde{H}_n(Y) \xrightarrow{i_*} \tilde{H}_n(C_f)$$

where C_f is the mapping cone of $f, i: Y \hookrightarrow C_f$.

Proof. $Z_f := Y \cup_f (X \times I) / \{x_0\} \times I$ is the **reduced mapping cylinder** of f. $q: Z_f \to C_f$ is defined by

$$\frac{y \mapsto y}{(x,t)^{Z_f} \mapsto (x,t)}^C$$

By Dold-Thom theorem, the induced map SP q is quasi-fibration SP $Z_f \to SP C_f$ with fiber SP X. By definition of quasi-fibration, we have

$$\pi_n(\operatorname{SP} X) \cong \tilde{H}_n(X) \xrightarrow{f^*} \pi_n(\operatorname{SP} Z_f) \cong \tilde{H}_n(Y) \xrightarrow{i^*} \pi_n(\operatorname{SP} C_f) = \tilde{H}_n(C_f)$$

Proposition 2.2. There does not exist retraction $r : \mathbb{D}^n \to S^{n-1}$.

Proof. $id = r \circ i : \mathbb{S}^{n-1} \to \mathbb{D}^n \to \mathbb{S}^{n-1}$ induces

$$id_* = r_* \circ i_* : \mathbb{Z} \cong \tilde{H}_{n-1} \mathbb{S}^{n-1} \to \tilde{H}_{n-1} \mathbb{D}^n \cong 0 \to \tilde{H}_{n-1} \mathbb{S}^{n-1} \cong \mathbb{Z}$$

which lead to contradiction.

Theorem 2.3. Fix-point theorem: If $f : \mathbb{D}^n \to \mathbb{D}^n$ is continuous, then exist $x_0 \in \mathbb{D}^n$ such that $x_0 = f(x_0)$.

Proof. (non-constructive) No such x_0 implies $\forall x \in \mathbb{D}^n, f(x) \neq x$ therefore, we can construct continuous retraction $r : \mathbb{D}^n \to \mathbb{S}^{n-1}$ by

r(x):= the intersection of "ray starting from f(x) to x" and \mathbb{S}^{n-1} . Contradict to 2.2.

Definition 2.2. Let (X, A) be an CW-pair, define the *n*-th homology group for $n \in \mathbb{N}$ of (X, A) be:

$$H_n(X,A) := H_n(X \cup CA)$$

And for single space:

$$H_n(X) := H_n(X, \emptyset) = \tilde{H}(X+1)$$

where $X + 1 := X \sqcup *$.

Note. Map between CW-pair $f: (X, A) \to (Y, B)$, induces map $\overline{f}: X \cup CA \to Y \cup CB$ defined by $(x, t) \mapsto (f(x), t)$, which induces $f_*: \tilde{H}_n(X \cup CA) \to \tilde{H}_n(Y \cup CB)$ for any $n \in \mathbb{N}$.

2.2 Axioms for Homology

Definition 2.3. A (Ordinary) Homology Theory (on **TOP** with coefficient $G \in \mathbf{Ab}$) is functors $\{H_n(-,-;G) : \mathbf{TOP}(2) \to \mathbf{Ab}\}_{n \in \mathbb{Z}}$, with natural transformations $\partial_{n,(X,A)} : H_n(X,A;G) \to H_{n-1}(A,\emptyset;G)$ (called connecting homomorphism) satisfying following axioms:

• Dimension:

 $H_0(*, \emptyset; G) = G$, for any $n \neq 0$, $H_n(*, \emptyset; G) = 0$.

• Weak Equivalence: Weak equivalence $f: (X, A) \to (Y, B)$ induces isomorphism

 $f_*: H_*(X, A; G) \to H_*(Y, B; G)$

• Long Exact Sequence:

For any $(X, A) \in \mathbf{TOP}(2)$, maps $A \hookrightarrow X$ and $(X, \emptyset) \to (X, A)$ induce a long exact sequence together with ∂ :

$$\cdots \to H_{q+1}(A;G) \to H_{q+1}(X;G) \to H_{q+1}(X,A;G) \to H_q(A;G) \to \cdots$$

where $H_n(X;G) := H_n(X,\emptyset;G)$.

• Additivity:

If $(X, A) = \coprod_{\lambda} (X_{\lambda}, A_{\lambda})$ in **TOP**(2), then inclusions $i_{\lambda} : (X_{\lambda}, A_{\lambda}) \to (X, A)$ induces isomorphism

$$(\bigoplus i_{*,\lambda}): \bigoplus_{\lambda} H_*(X_{\lambda}, A_{\lambda}; G) \cong H_*(X, A; G)$$

• Excision:

If (X; A, B) is an **excisive triad** (that is, $X = A \cup B$), then inclusion $(A, A \cap B) \hookrightarrow (X, B)$ induces isomorphism

$$H_*(A, A \cap B; G) \cong H_*(X, B; G)$$

Note. An equivalent form of Excision Axiom:

If $(X, A) \in \mathbf{TOP}(2)$, U is subspace of A and $\overline{U} \subseteq A$, then inclusion $i : (X - U, A - U) \hookrightarrow (X, A)$ induces isomorphism

$$i_*: H_*(X - U, A - U; G) \rightarrow H_*(X, A; G)$$

There is a critical criterion about weak homotopy equivalence between excisive triads, we prove lemmas first:

Lemma 2.4. For

if D is deformation retract of X and $Z \subseteq D \subseteq X$, then $D \cup_Z Y$ is deformation retract of $X \cup_Z Y$.

Proof. Let $h : \operatorname{id}_X \simeq r \circ i$ where r is the deformation retraction $X \to D$. Define $h_* : \operatorname{id}_{X \cup_Z Y} \simeq (i \cup_Z \operatorname{id}_Y) \circ (r \cup_Z \operatorname{id}_Y)$

$$h_* : (X \cup_Z Y) \times I \to X \cup_Z Y$$
$$(x,t) \mapsto f_*(h(x,t))$$
$$(y,t) \mapsto i_*(y)$$

Observe that $(X \cup_Z Y) \times I = (X \times I) \cup_{Z \times I} (Y \times I)$, check that h^* is continuous:

Lemma 2.5. For maps $i : C \to A$, $j : C \to B$ define the double mapping cylinder $M(i, j) := A \cup_{C \times \{0\}} C \times I \cup_{C \times \{1\}} B$. If i is closed cofibration, then the quotient map

$$q: M(i,j) \to A \cup_C B$$
$$a \mapsto a$$
$$b \mapsto b$$
$$(c,t) \mapsto c$$

is a homotopy equivalence.

Proof.

$$\begin{array}{c} C \longrightarrow B \\ i \\ \downarrow \\ A \xrightarrow[i_A]{} A \cup_C B \end{array}$$

The canonical quotient $r:M_{i_A}\to A\cup_C B$ is a deformation retraction with homotopy:

$$h: (B \cup_{C \times 0} (A \times I)) \times I \to B \cup_{C \times 0} (A \times I) = M_{i_A}$$
$$(a, t, s) \mapsto (a, (1 - s)t)$$
$$(b, s) \mapsto b$$

Observe that $C \times I \cup_C A \times \{1\}$ is a deformation retract of $A \times I$, since $i : C \to A$ is closed cofibration.

Then we have $M(i, j) = B \cup_{C \times \{0\}} (C \times I \cup_{C \times \{1\}} A \times \{1\})$ is a deformation retract of $B \cup_{C \times \{0\}} A \times I = M_{i_A}$. (use lemma 2.4)

Finally, an easy check shows that $M(i,j) \to M_{i_A} \xrightarrow{r} A \cup_C B$ is identical to q.

Theorem 2.6. For excisive triads $(X; X_1, X_2)$, $(X'; X'_1, X'_2)$ and map $e: X \to X'$, if

$$e|_{X_1} : X_1 \to X'_1$$

$$e|_{X_2} : X_2 \to X'_2$$

$$e|_{X_3} : X_3 \to X'_3$$

are weak equivalences, (where $X_3 := X_1 \cap X_2$, $X'_3 := X'_1 \cap X'_2$) then e is.

Proof. Use an important criterion of weak homotopy equivalence, it suffices to show for all $n \in \mathbb{N}$, any commutative diagram below:

can be filled like:

whose upper triangle commutes.

Let

$$A_1 := g^{-1}(X - \overset{\circ}{X_1}) \cup f^{-1}(X' - \overset{\circ}{X_1'})$$
$$A_2 := g^{-1}(X - \overset{\circ}{X_2}) \cup f^{-1}(X' - \overset{\circ}{X_2'})$$

which are disjoint closed subsets of D^{n+1} . Choose CW-complex structure on D^{n+1} such that for each *n*-cell $\sigma_i, \overline{\sigma_i} \cap (A_1 \cup A_2) = \overline{\sigma_i} \cap A_1$ or $\overline{\sigma_i} \cap A_2$. Now define

$$K_1 := \bigcup \{ \overline{\sigma_i} \mid g(\overline{\sigma_i} \cap S^n) \subseteq \overset{\circ}{X_1} \text{ and } f(\overline{\sigma_i}) \subseteq \overset{\circ}{X_1'} \} = \bigcup \{ \overline{\sigma_i} \mid \overline{\sigma_i} \cap A_1 = \emptyset \}$$
$$K_2 := \bigcup \{ \overline{\sigma_i} \mid g(\overline{\sigma_i} \cap S^n) \subseteq \overset{\circ}{X_2} \text{ and } f(\overline{\sigma_i}) \subseteq \overset{\circ}{X_2'} \} = \bigcup \{ \overline{\sigma_i} \mid \overline{\sigma_i} \cap A_2 = \emptyset \}$$

which are subcomplexes of D^{n+1} and satisfy $K_1 \cup K_2 = D^{n+1}$. By HELP, we have:

such that h_0 is $f|_{K_1 \cap K_2} \simeq e \circ g_0 \operatorname{rel}(S^n \cap K_1 \cap K_2)$. Apply HELP to:

where

 g_{K_i} are defined by $g_{K_i}|_{S^n \cap K_i} := g|_{S^n \cap K_i}$ and $g_{K_i}|_{K_1 \cap K_2} := g_0$, h_{K_2} are defined by $(h_{K_1}$ is similar):

$$h_{K_2} : ((S^n \cup K_1) \cap K_2) \times I \to X'_2$$
$$(x,t) \mapsto \begin{cases} e(g(x)) & x \in S^n \cap K_2\\ h_0(x,t) & x \in K_1 \cap K_2 \end{cases}$$

We get:

Define g^+ and $h: f \simeq g \operatorname{rel} S^n$ by $g^+|_{K_i} := g_i$ and $h|_{K_i \times I} := h_i$. $h|_{S^n \times I} = (e \circ g) \times \operatorname{id}_I (h \text{ is } \operatorname{rel} S^n) \text{ since } h_i(-,t)|_{S^n \cap K_i} = h_{K_i}(-,t)|_{S^n \cap K_i} = e \circ g|_{S^n \cap K_i}.$

Π

Note. The proof above can be easily modified to case each weak equivalence appear in the statement is an n-equivalence.

Following theorem allow us to use CW-triads to approximate excisive triads:

Theorem 2.7. For any excisive triad (X; A, B), there is a CW-triad $(\widetilde{X}; \widetilde{A}, \widetilde{B})$ (A CW-triad (X; A, B) is X and its subcomplex A, B such that $A \cup B = X$) and a map $r : \widetilde{X} \to X$ such that

$$\begin{split} r|_{\widetilde{A}} &: \widetilde{A} \to A \\ r|_{\widetilde{B}} &: \widetilde{B} \to B \\ r|_{\widetilde{C}} &: \widetilde{C} \to C \\ r &: \widetilde{X} \to X \end{split}$$

are all weak homotopy equivalences (where $\widetilde{C} := \widetilde{A} \cap \widetilde{B}$, $C := A \cap B$). Furthermore, such r is natural up to homotopy.

Proof. Choose a CW-approximation $r_C : \widetilde{C} \to C$ and extend it to $r_A : \widetilde{A} \to A$, $r_B : \widetilde{B} \to B$. $\widetilde{X} := \widetilde{A} \cup_{\widetilde{C}} \widetilde{B}$. $i : \widetilde{C} \to \widetilde{A}$ and $j : \widetilde{C} \to \widetilde{B}$ are closed cofibrations, by lemma 2.5 we have homotopy equivalence $q : M(i, j) \to \widetilde{X}$, which induces homotopy equivalence of triads:

$$\begin{split} q: M(i,j) \to \widetilde{X} \\ q|: \widetilde{A} \cup (\widetilde{C} \times [0,\frac{2}{3})) \to \widetilde{A} \\ q|: \widetilde{B} \cup (\widetilde{C} \times (\frac{1}{3},1]) \to \widetilde{B} \end{split}$$

then we can deduce that $r \circ q$ is a weak homotopy equivalence by theorem 2.6. Consequently, r is weak homotopy equivalence. r is natural up to homotopy since each CW-approximation r_C, r_A, r_B is.

Then we have:

Definition 2.4. A (Ordinary) Homology Theory on CW-complexes with coefficient $G \in \mathbf{Ab}$ is functors $\{H_n(-, -; G) : \mathbf{CW}\text{-pairs} \to \mathbf{Ab}\}_{n \in \mathbb{Z}}$, with natural transformations $\partial_{-}(m, n) : H_n(X, A; C) \to H_n(A, \emptyset; C)$ (called connecting homomor

with natural transformations $\partial_{n,(X,A)}: H_n(X,A;G) \to H_n(A,\emptyset;G)$ (called connecting homomorphism)

satisfying axioms with the excision axiom changed to:

• Excision:

If (X;A,B) is an **CW-triad** (that is $X = A \cup B$ for subcomplexes A and B) then the inclusion $(A, A \cap B) \hookrightarrow (X, B)$ induces isomorphism

$$H_*(A, A \cap B; G) \cong H_*(X, B; G)$$

Proposition 2.8. The homology groups defined in definition 2.2 with $H_{-n}(X) := 0$ is a ordinary homology theory on CW-complexes with coefficient \mathbb{Z} .

Proof.

- Dimension: by a corollary, $H_q(*, \emptyset) = \pi_q(\operatorname{SP} S^0) = \begin{cases} \mathbb{Z} & q = 0 \\ 0 & q \ge 1 \end{cases}$
- Weak Equivalence: SP preserves weak equivalence.
- Long Exact Sequence: use a corollary of Dold-Thom theorem.
- Additivity: For index set Λ , $P := \{S \mid S \subseteq \Lambda\}$. Then define $Y_S := \bigvee_{\lambda \in S} X_\lambda \cup CA_\lambda = (\coprod_{\lambda \in S} X_\lambda) \cup C(\coprod_{\lambda \in S} A_\lambda)$, and use fact that SP commutes with directed colimit, we have $\bigvee_{\lambda \in \Lambda} \operatorname{SP}(X_\lambda \cup CA_\lambda) = \varinjlim_{S \in P} \operatorname{SP} Y_S \approx \operatorname{SP}(\varinjlim_{S \in P} Y_S) = \operatorname{SP}((\coprod_{\lambda \in \Lambda} X_\lambda) \cup C(\coprod_{\lambda \in \Lambda} A_\lambda)) =$ $\operatorname{SP}(X \cup CA)$. Which induces $\bigoplus_{\lambda \in \Lambda} \tilde{H}_n(X_\lambda \cup CA_\lambda) \cong \pi_n(\bigvee_{\lambda \in \Lambda} \operatorname{SP}(X_\lambda \cup CA_\lambda)) \cong \pi_n(\operatorname{SP}(X \cup CA)) =$ $\tilde{H}_n(X \cup CA)$.
- Excision: For CW-triad (X; A, B), $A/(A \cap B) \approx X/B$. Apply theorem 1.25 to $(Y \cup CZ, CZ)$ to show that $H_n(Y, Z) \cong \tilde{H}_n(Y/Z)$.

2.3 Cellular Homology

Lemma 2.9. For an ordinary homology theory $H_*(-,-;G)$, if X is a CW-complex, then for any $n \in \mathbb{Z}$ $H_n(X) \cong \tilde{H}_{n+1}(\Sigma X)$.

Proof. Apply long exact sequence axiom on (CX, X): $(H_*(CX) = 0$ due to weak equivalence axiom):

$$0 \cong H_{n+1}(CX) \to H_{n+1}(CX, X) \xrightarrow{\cong} H_n(X) \to H_n(CX) \cong 0$$

Use excision axiom and weak equivalence axiom, we have:

$$H_*(CX, X) \cong H_*(CX \cup CX, CX) \cong H_*(\Sigma X, *)$$

Proposition 2.10. For an ordinary homology theory $H_*(-,-;G)$, if X is a pointed CW-complex with $X^{-1} := *$, then for any $n \ge 0$

$$H_q(X^n, X^{n-1}) \cong \tilde{H}_q(X^n/X^{n-1}) \cong \begin{cases} \bigoplus_{i \in I_n} G & q = n \\ 0 & q \neq n \end{cases}$$

where I_n is set of all q-cells.

Proof. Use additivity axiom and lemma 2.9 to see that $H_n(\bigvee S^n) \cong \bigoplus G$ and $H_q(\bigvee S^n) = 0$ for $q \neq n$. Use excision axiom and weak equivalence axiom to see

$$H_q(X^n, X^{n-1}) \cong H_q(X^n \cup CX^{n-1}, CX^{n-1}) \cong H_q(X^n/X^{n-1}, *) \cong \tilde{H}_q(\bigvee_{i \in I_n} S^n)$$

Corollary 2.11. If $H_*(-,-)$ is an ordinary homology theory, then for a pointed CW-complex X with $X^{-1} := *$, we have:

$$\begin{split} \tilde{H}_q(X^n) &= 0 & \text{for } q > n \\ H_q(X^n) &\cong H_q(X^{n+1}) \cong H_q(X) & \text{for } q < n \\ H_n(X^n) &\xrightarrow{i_*} H_n(X^{n+1}) & \text{is epimorphism} \end{split}$$

for any $n \geq -1$.

Proof. Use long exact sequence of (X^{n+1}, X^n) :

$$\cdots \to H_{q+1}(X^{n+1}, X^n) \xrightarrow{\partial_{q+1}} H_q(X^n) \xrightarrow{i_*} H_q(X^{n+1}) \to H_q(X^{n+1}, X^n) \xrightarrow{\partial_q} H_{q-1}(X^n) \to \cdots$$
$$\cdots \to H_1(X^{n+1}, X^n) \xrightarrow{\partial_1} H_0(X^n) \xrightarrow{i_*} H_0(X^{n+1}) \to H_0(X^{n+1}, X^n)$$

For q < n, $H_q(X^n) \cong H_q(X^{n+1}) \cong \cdots \cong \varinjlim_{i \in \mathbb{N}} H_q(X^i)$. For q > n, if n > -1, $H_q(X^n) \cong H_q(X^{n-1}) \cong \cdots \cong H_q(X^{-1}) \cong 0$, if n = -1, $\tilde{H}_0(X^{-1}) \cong 0 \cong \tilde{H}_q(X^{-1})$. For q = n, we have following exact:

$$\to H_{n+1}(X^{n+1}, X^n) \xrightarrow{\partial_{n+1}} H_n(X^n) \xrightarrow{i_*} H_n(X^{n+1}) \to H_n(X^{n+1}, X^n) \cong 0$$

Definition 2.5. For pointed CW-complex X with $X^{-1} := *$ and a ordinary homology theory $H_*(-,-)$ the (reduced) **cellular chain complex** $\{\tilde{C}_n(X), d_n\}$ of X is defined by:

$$\tilde{C}_n(X) := H_n(X^n, X^{n-1})$$
$$d_n : H_n(X^n, X^{n-1}) \xrightarrow{\partial_n} H_{n-1}(X^{n-1}) \xrightarrow{i_*} H_{n-1}(X^{n-1}, X^{n-2})$$

Note. Use cellular approximation, we can see that the construction $\tilde{C}_*(-)$ is a functor.

Theorem 2.12. For any ordinary homology theory $H_*(-,-)$ and any pointed CW-complex X, (with $X^{-1} := *$) the n-th homology of cellular chain complex is isomorphic to $\tilde{H}_n(X)$:

$$H_n(C_*(X)) \cong H_n(X,*)$$

if we set $X^{-1} := \emptyset$ in our $\tilde{C}_*(X)$, then $H_n(\tilde{C}_*(X)) \cong H_n(X, \emptyset)$.

Proof. Notice that we have commutative diagram with each straight line exact: (use long exact sequence of pairs, n > 0)

For n = 0:

$$H_1(X^1, X^0) \xrightarrow{d_1} H_0(X^0, X^{-1}) \xrightarrow{} \operatorname{coker}(d_1) \cong H_0(X^1, X^{-1}) \xrightarrow{} H_0(X^1, X^0) \cong 0$$

Note. If the ordinary homology theory has coefficient \mathbb{Z} , then the $d_n : \tilde{C}_n(X) \to \tilde{C}_{n-1}(X)$ is given by:

$$\mathbb{Z}_i \ni 1_i = e_i^n \mapsto \sum_{j \in I_{n-1}} \alpha_i^j e_j^{n-1}$$

where α_i^j is degree of map

$$\beta_i^j: S^n \approx \partial e_i^n \xrightarrow{\varphi_i} X^{n-1} \to X^{n-1}/X^{n-2} \to \bigvee_{j' \in I_{n-1}} S^{n-1} \xrightarrow{p_j} S^{n-1}$$

where φ_i is the characteristic map, p_j maps every point not in S_j^{n-1} to *.

Corollary 2.13. For any ordinary homology theory $H_*(-, -)$ and any relative CW-complex (X, A), the cellular chain of X with is $X^{-1} := A$ noted $C_*(X, A)$, we have:

$$H_n(C_*(X,A)) \cong H_n(X/A,*) \cong H_n(X,A)$$

Proposition 2.14. If (X, A) is a (pointed) CW-pair, (with $X^{-1} := * =: A^{-1}$) use the natural relative CW-complex (X, A) to obtain $C_*(X, A)$, then $\tilde{C}_*(X)/\tilde{C}_*(A) \cong C_*(X, A)$ naturally.

Proof. $H_n(X^n, X^{n-1})/H_n(A^n, A^{n-1}) \cong H_n((X/A)^n, (X/A)^{n-1})$ and $H_0(X^0, X^{-1})/H_n(A^0, A^{-1}) \cong H_n((X/A)^0, (X/A)^{-1})$. Naturality:

$$\begin{array}{cccc}
\bigoplus_{I_X^n} \mathbb{Z} & \xrightarrow{\simeq} & \bigoplus_{I_X^n - I_A^n} \mathbb{Z} \\
& & & & & & \\
f_* & & & & & \\
& & & & & & \\
\bigoplus_{I_Y^n} \mathbb{Z} & & & & & \\
\bigoplus_{I_X^n} \mathbb{Z} & \xrightarrow{\simeq} & \bigoplus_{I_Y^n - I_B^n} \mathbb{Z}
\end{array}$$

where I_Z^n is the index set of *n*-cells of $Z, f: (X, A) \to (Y, B)$ is a cellular map.

3 Homotopy and Eilenberg-Mac Lane Spaces

3.1 Homotopy Excision Theorem and its Corollary

Theorem 3.1. (Blakers–Massey) Homotopy Excision Theorem:

For pointed CW-triad (X; A, B) such that $C := A \cap B \neq \emptyset$, if (A, C) is (m-1)-connected and (B, C) is (n-1)-connected where $m \ge 2$, $n \ge 1$. Then $i : (A, C) \to (X, B)$ is an (m + n - 2)-equivalence for pairs.

Note. We can replace the "CW-triad" with "excisive triad" in condition by theorem 2.7.

Proof. See here.

Corollary 3.2. Suppose that $Y_0 \hookrightarrow Y$ is cofibration, (Y, Y_0) is (r-1)-connected and Y_0 is (s-1)-connected, then $(Y, Y_0) \to (Y/Y_0, *)$ is (r+s-1)-equivalence. $(r \ge 2, s \ge 1)$

Proof. $Y_0 \hookrightarrow CY_0$ is cofibration and (CY_0, Y_0) is s-connected. Use homotopy excision theorem (with $X = Y \cup CY_0$, A = Y, $B = CY_0$, $C = Y_0$) to see $(Y, Y_0) \to (Y \cup CY_0, CY_0)$ is (r + s - 1)equivalence. And $(Y \cup CY_0, CY_0) \to (Y/Y_0, *)$ is homotopy equivalence since $Y_0 \hookrightarrow Y$ is cofibration.

Corollary 3.3. For $n \ge 2$, $f: X \to Y$ is (n-1)-equivalence between (s-1)-connected spaces, then $(M_f, X) \to (C_f^+, *)$ is (n+s-1)-equivalence. Where $C_f^+ := Y \cup_f C^+ X$, $C^+ X := (X \times I)/(X \times \{1\})$. is the unreduced mapping cone and the unreduced cone.

Proof. f is (n-1)-equivalence implies (M_f, X) is (n-1)-connected. Use corollary above.

Corollary 3.4. For $n \ge 2$, if $f: X \to Y$ is pointed map between (n-1)-connected well-pointed spaces (that is, pointed space whose inclusion of the base point is (closed) cofibration). Then C_f is (n-1)-connected and $\pi_n(M_f, X) \to \pi_n(C_f, *)$ is isomorphism.

Proof. Use homotopy extension property to extend to unreduced case. f is map between (n-1)connected space implies f is at least a (n-1)-equivalence. Therefore $(M_f, X) \to (C_f, *)$ is (2n-1)equivalence, Since we have n < 2n-1 for any $n \ge 2$, $\pi_n(M_f, X) \to \pi_n(C_f, *)$ is isomorphism.

Theorem 3.5. (Freudenthal Suspension Theorem) If X is well-pointed and (n-1)-connected $(n \ge 1)$, then the map:

$$\sigma: \pi_q(X) \to \pi_{q+1}(\Sigma X) \cong \pi_q(\Omega \Sigma X)$$
$$f \mapsto \Sigma f$$

is isomorphism if q < 2n - 1 and epimorphism if q = 2n - 1.

Proof. If we have $f : (I^q, \partial I^q) \to (X, *)$ then $f \times \operatorname{id}_I : I^{q+1} \to X \times I$ will give a map $\overline{f \times \operatorname{id}_I} : (I^{q+1}, \partial I^{q+1}, \partial I^q \times I \cup \partial I \times \{1\}) \to (CX, X, *)$ since $J^q = \partial I^q \times I \cup \partial I \times \{0\}$, it does not give a map in $\pi_{q+1}(CX, X)$. we should change $\overline{f \times \operatorname{id}_I}$ into $\overline{f \times -\operatorname{id}_I}$. we have commutative diagram:

$$\pi_{q+1}(CX, X) \xrightarrow{p_*} \pi_{q+1}(CX/X, *) \qquad [\overline{f \times -\mathrm{id}_I}] \longmapsto [p \circ (\overline{f \times -\mathrm{id}_I})]$$

$$\partial \left(\int_{i}^{i} \qquad \| \qquad \qquad \int_{-\sigma}^{i} \pi_{q+1}(\Sigma X) \qquad [f] \longmapsto [-\Sigma f]$$

Where $p: (CX, X) \to (CX/X, *)$ is the canonical quotient map and $i: [f] \to [\overline{f \times -\mathrm{id}_I}]$ makes $\pi_{q+1}(CX) \to \pi_{q+1}(CX, X) \to \pi_q(X) \to \pi_q(CX)$ split in middle (that is, *i* is inverse of the connecting homomorphism ∂). We verify the commutativity:

$$\begin{split} -\Sigma f : (I^{q+1}, \partial I^{q+1}) \to (CX/X, *) \\ (s,t) \mapsto f(s) \wedge (1-t) \\ p \circ (\overline{f \times -\mathrm{id}_I}) : (I^{q+1}, \partial I^{q+1}) \to (CX/X, *) \\ (s,t) \mapsto f(s) \wedge (1-t) \end{split}$$

Since $X \hookrightarrow CX$ is cofibration and *n*-equivalence between (n-1)-connected spaces, *p* is an 2*n*-equivalence. Therefore, q+1 < 2n implies $-\sigma$ is isomorphism, q+1 = 2n implies $-\sigma$ is epimorphism, and we have $-\sigma$ is iff σ is.

Corollary 3.6. If Y is well pointed (n-1)-connected space then $Y \to \Omega \Sigma Y$ is (2n-1)-equivalence. By theorem 1.3, for any CW-complex X with dim X < 2n - 1, $\Sigma : [X,Y]_* \to [\Sigma X, \Sigma Y]_* \cong [X, \Omega \Sigma Y]_*$ is bijection.

Definition 3.1. We now define the *q*-th stable homotopy group:

$$\pi_k^s(X) := \varinjlim_r \pi_{k+r}(\Sigma^r X) \cong \pi_{2k+2}(\Sigma^{k+2} X) \cong \pi_{k+n}(\Sigma^n X) \qquad (n-1 > k)$$

(Since $\Sigma^n X$ is (n-1)-connected) And stable homotopy class:

$$[X,Y]^s_* := \varinjlim_r [\Sigma^r X, \Sigma^r Y]$$

Note. We'll see later that $\{\pi_n^s\}_{n\in\mathbb{N}}$ defines a generalized homology theory.

3.2 Hurewicz Theorem

First, we use homotopy excision theorem to prove following lemmas:

Lemma 3.7. (every $S_a^n \approx S^n$) We have canonical $i_a : S_a^n \hookrightarrow \bigvee_{a \in A} S_a^n$ and for n > 1:

$$\pi_n(\bigvee_{a\in A} S_a^n) \cong \bigoplus_{a\in A} \mathbb{Z}_a$$

where $[i_a] = 1 \in \mathbb{Z}_a \subseteq \bigoplus_{a \in A} \mathbb{Z}_a$ and every $\mathbb{Z}_a \cong \mathbb{Z}$. For n = 1:

$$\pi_n(\bigvee_{a\in A} S_a^1) \cong \coprod_{a\in A} \mathbb{Z}_a$$

where \coprod is taken in category **Grp**, $[i_a] = 1 \in \mathbb{Z}_a \subseteq \coprod_{a \in A} \mathbb{Z}_a$ and every $\mathbb{Z}_a \cong \mathbb{Z}$.

Proof.

Case n = 1: Apply the Seifert-van Kampen theorem.

Case n > 1:

Suppose each S_a^n have CW-complex structure with one 0-cell and one *n*-cell. Consider finite product $\prod_{1 \le i \le k} S_i^n$ and its subcomplex, finite wedge product $\bigvee_{1 \le i \le k} S_i^n$. The inclusion

$$\bigvee_{1 \leq i \leq k} S_i^n \hookrightarrow \prod_{1 \leq i \leq k} S_i^n$$

is (2n-1)-equivalence since $\prod_{1 \leq i \leq k} S_i^n - \bigvee_{1 \leq i \leq k} S_i^n$ only have cells of dim $\geq 2n$. (use lemma 1.13) Use exact homotopy sequence of pair, we deduce that $\pi_q(\bigvee_{1 \leq i \leq k} S_i^n) \to \pi_q(\prod_{1 \leq i \leq k} S_i^n) \cong \bigoplus_{1 \leq i \leq k} \mathbb{Z}_i$ is an isomorphism for $q \leq 2n-2$. And $S_i^n \hookrightarrow \bigvee_{1 \leq i \leq k} S_i^n \hookrightarrow \prod_{1 \leq i \leq k} S_i^n$ is just the *i*-th inclusion $S_i^n \hookrightarrow \prod_{1 \leq i \leq k} S_i^n$ which represents $1 \in \mathbb{Z}_i \hookrightarrow \bigoplus_{1 \leq i \leq k} \mathbb{Z}_i$. Infinite wedge case:

$$\begin{array}{ccc} \bigoplus_{1 \leq i \leq k} \pi_q(S_i^n) & \stackrel{\cong}{\longrightarrow} \pi_q(\bigvee_{1 \leq i \leq k} S_i^n) \\ & & & \downarrow \\ & & & \downarrow \\ & \bigoplus_{a \in A} \pi_q(S_a^n) \xrightarrow[\bigoplus_{a \in A} i_{a_*}]{}^{**} \pi_q(\bigvee_{a \in A} S_a^n) \end{array}$$

 $\bigoplus_{a \in A} i_{a*} \text{ is monomorphism since every homotopy } S^n \times I \to \bigvee_{a \in A} S^n_a \text{ has a compact image, and}$ $\bigoplus_{a \in A} i_{a*} \text{ is epimorphism since every map } S^n \times I \to \bigvee_{a \in A} S^n_a \text{ has a compat image.}$

Lemma 3.8. For $n \ge 1$, if we have a map $f: \coprod_{a \in A} \mathbb{Z}_a \to \coprod_{b \in B} \mathbb{Z}_b$ (case n = 1) or a map $f: \bigoplus_{a \in A} \mathbb{Z}_a \to \bigoplus_{b \in B} \mathbb{Z}_b$ (case n > 1). Then there exists a map $\phi: \bigvee_{a \in A} S_a^n \to \bigvee_{b \in B} S_b^n$ unique up to homotopy and satisfy $\pi_n(\phi) = f$.

Proof. Suppose $f(1_a) = [\phi_a] \in [S^n, \bigvee_{b \in B} S_b^n]_*$, then ϕ_a is indeed a map $S_a^n \to \bigvee_{b \in B} S_b^n$. Now we define $\phi := \bigvee_a \phi_a : \bigvee_{a \in A} S_a^n \to \bigvee_{b \in B} S_b^n$. For any $a \in A$, $\phi|_{S_a^n} = \phi_a$, we have

$$\pi_n(\phi)(1_a) = [\phi|_{S_a^n} \circ \mathrm{id}_{S_a^n}] = [\phi_a] = f(1_a)$$

which implies $\pi_n(\phi) = f$ since they are group homomorphisms.

Uniqueness up to homotopy: $\pi_n(\phi)[1_a] = \pi_n(\phi')[1_a]$ implies $\phi|_{S_a^n} \simeq \phi'|_{S_a^n}$ rel*. Therefore $\phi \simeq \phi'$ rel*.

Definition 3.2. If H_n is a ordinary homology theory with coefficient \mathbb{Z} , then the map

$$h_X : \pi_n(X) \to \check{H}_n(X) := H_n(X, *)$$

$$[f] \mapsto f_*(1) \qquad (f_* : \tilde{H}_n(S^n) \to \tilde{H}_n(X))$$

is called Hurewicz Homomorphism.

Note. $h_{(-)}$ is natural transformation since we have

commutes. Moreover, it commutes with connecting homomorphism.

Lemma 3.9. If $X = \bigvee_{a \in A} S^n$, $h_X : \pi_n(X) \to \tilde{H}_n(X)$ is abelianization if n = 1, isomorphism if $n \ge 2$.

Proof. Directly from lemma 3.8. (we used homotopic properties of spheres only in proving is lemma) \Box

Theorem 3.10. (Hurewicz) If X is (n-1)-connected, then $h_X : \pi_n(X) \to H_n(X)$ is abelianization if n = 1, isomorphism if $n \ge 2$.

Proof. We can assume X is CW-complex with $X^{n-1} = *$ and each characteristic map is pointed. (since we have theorem 1.5)

For CW-complex X, $\pi_n(X^{n+1}) \cong \pi_n(X)$ and $H_n(X^{n+1}) \cong H_n(X)$, Since we have cellularity of homotopy group and cellularity of homology.

Then we have $X^n = \bigvee_{b \in B} S_b^n$, $X^{n+1} = C_{\phi}$ where $\phi : \bigvee_{a \in A} S_a^n \to X^n$ are the characteristic maps. Use naturality of $h_{(-)}$, we have maps between exact sequence:

$$\pi_{n}(\bigvee_{a \in A} S_{a}^{n}) \xrightarrow{\phi_{*}} \pi_{n}(X^{n}) \longrightarrow \pi_{n}(C_{\phi}) \longrightarrow 0$$

$$\downarrow^{h_{\bigvee_{a \in A} S_{a}^{n}}} \qquad \downarrow^{h_{X^{n}}} \qquad \downarrow^{h_{C_{\phi}}}$$

$$\tilde{H}_{n}(\bigvee_{a \in A} S^{n}) \xrightarrow{\phi_{*}} \tilde{H}_{n}(X^{n}) \longrightarrow \tilde{H}_{n}(C_{\phi}) \longrightarrow 0$$

If n > 1, exactness of top row is directly from lemma 3.2. $((M_{\phi}, \bigvee_{a \in A} S_a^n)$ is (n-1)-connected since we have lemma 1.13) 5-lemma shows that $h_{C_{\phi}}$ is isomorphism.

If n = 1, Seifert-van Kampen theorem shows that $\pi_1(C_{\phi}) = \pi_1(X^n)/\langle \operatorname{Im} \phi_* \rangle_{nor}$. (where for $A \subseteq$ a group G, $\langle A \rangle_{nor} := \{gAg^{-1} \mid g \in G\}$). The top row is not exact, but top row's abelianization is exact since $\langle \operatorname{Im} f \rangle_{nor}/[B, B] = \operatorname{Im} f/[B, B]$ for any group morphism $f : A \to B$. Therefore we have diagram below with the middle row and the bottom row exact:

Finally apply 5-lemma on the middle row and the bottom row.

Corollary 3.11. (Relative version of Hurewicz theorem) If (X, A) is (n-1)-connected CW-pair, A is 1-connected subcomplex and $n \ge 2$, then the Hurewicz morphism $h_{(X,A)} : \pi_n(X,A) \to H_n(X,A)$ (defined analogue to h_X) is isomorphism.

Proof. Use theorem 3.2 and Hurewicz theorem of $h_{X/A}$.

Uniqueness of Ordinary Homology Theory:

Theorem 3.12. If $H_*(-,-)$ is ordinary homology theory with coefficient \mathbb{Z} on CW-complexes, then $H_*(-,-)$ is unique up to natural isomorphism.

Proof. Since $H_n(C_*(X)) \cong H_n(X)$ naturally (in X), our goal is to prove the complex defined by

$$C'_{n}(X) := \pi_{n}(X^{n}, X^{n-1})_{ab}$$
$$d'_{n} := \pi_{n}(X^{n}, X^{n-1})_{ab} \xrightarrow{\partial} \pi_{n-1}(X^{n-1})_{ab} \to \pi_{n-1}(X^{n-1}, X^{n-2})_{ab}$$

is isomorphic to $C_*(X)$ naturally. Isomorphic:

Naturality directly follows from naturality of Hurewicz morphism.

Note. Similarly uniqueness pf ordinary homology theory with coefficient G.

3.3 Moore Spaces

Definition 3.3. A space X is **Eilenberg-Mac Lane space** of type K(G, n) (where G is group and is abelian for $n \ge 2$) if

$$\pi_q(X) \cong \begin{cases} G & n = q \\ 0 & n \neq q \end{cases}$$

We see that SP S^n is a $K(\mathbb{Z}, n)$. Now we use this to construct other K(G, n).

Note. In order to construct K(G, n), we construct a space M(G, n) which have $\pi_n(M(G, n)) = G$, $\pi_q(M(G, n)) = 0$ for q < n and we can apply SP on it to kill all dim > n homotopy group.

Proposition 3.13. For any $k \in \mathbb{Z}$, there is a map $a_k : S^1 \to S^1$ with a_k , and $C_{a_k} = S^1 \cup_{a_k} e^2$ is the desired $M(\mathbb{Z}/k\mathbb{Z}, 1)$ (that is $SP(S^1 \cup_{a_k} e^2)$ is a $K(\mathbb{Z}/k\mathbb{Z}, 1)$).

Proof. Consider sequence $S^1 \xrightarrow{a_k} S^1 \hookrightarrow C_{a_k} \twoheadrightarrow \Sigma S^1 = C_{a_k}/S^1$, we apply an usual form of Dold-Thom Theorem to see that $SP(C_{a_k}) \to SP(S^2)$ is a quasi-fibration with fiber $SP(S^1)$. Then we have exact sequence:

$$\cdots \to \pi_q(\operatorname{SP} S^1) \to \pi_q(\operatorname{SP} C_{a_k}) \to \pi_q(\operatorname{SP} S^2) \to \pi_{q-1}(\operatorname{SP} S^1) \to \cdots \to \pi_2(\operatorname{SP} S^1) \to \pi_2(\operatorname{SP} C_{a_k}) \to \pi_2(\operatorname{SP} S^2) \to \pi_1(\operatorname{SP} S^1) \to \pi_1(\operatorname{SP} C_{a_k}) \to \pi_1(\operatorname{SP} S^2)$$

We can conclude that $\pi_q(\text{SP } C_{a_k}) = 0$ for any $q \neq 0, 1$ and:

$$0 \to \pi_2(\operatorname{SP} C_{a_k}) \to \pi_2(\operatorname{SP} S^2) = \mathbb{Z} \xrightarrow{\partial} \pi_1(\operatorname{SP} S^1) = \mathbb{Z} \to \pi_1(\operatorname{SP} C_{a_k}) \to 0$$

exact. Where ∂ is defined by:

$$\pi_2(\operatorname{SP} S^2) \cong [D^2, S^1, *; \operatorname{SP} C_{a_k}, \operatorname{SP} S^1, *] \ni f \mapsto f|_{S^1} \in [S^1, S^1]_*$$

(Now we want to show that ∂ is multiplication by k)

The $1 \in \mathbb{Z} \cong \pi_2(\operatorname{SP} S^2)$ is represented by $[i_2 : S^2 \hookrightarrow \operatorname{SP} S^2]$.

Since $[D^2, S^1, *; \operatorname{SP} C_{a_k}, \operatorname{SP} S^1, *] \xrightarrow{p_*} [D^2, S^1; \operatorname{SP} S^2, *]$ is isomorphism,

and the map $\varphi : (D^2, S^1) \xrightarrow{\mathrm{id}_{e^2} \cup a_k} (C_{a_k}, S^1) \hookrightarrow (\operatorname{SP} C_{a_k}, \operatorname{SP} S^1)$ satisfy $p \circ \varphi = i_2$, the $1 \in \mathbb{Z} \cong \pi_2(\operatorname{SP} C_{a_k}, \operatorname{SP} S^1)$ is represented by φ . Then we have $\partial(1)$ is represented by $\varphi|_{S^1} = i_1 \circ a_k$ where $i_1 : S^1 \hookrightarrow \operatorname{SP} S^1$. The map ∂ is $\mathbb{Z} \ni n \mapsto kn \in \mathbb{Z}$ since $[i_1 \circ a_k] = k$. Therefore $\pi_2(\operatorname{SP} C_{a_k}) = 0$ and $\pi_1(\operatorname{SP} C_{a_k}) = \mathbb{Z}/k\mathbb{Z}$.

Proposition 3.14. For each $n \ge 1$, $k \in \mathbb{Z}$, $SP(S^n \cup_{\Sigma^{n-1}a_k} e^{n+1})$ is a $K(\mathbb{Z}/k\mathbb{Z}, n)$.

Proof. For $q \ge 1$, $\Sigma(S^q \cup_{\Sigma^{q-1}a_k} e^{q+1}) \approx \Sigma S^q \cup_{\Sigma^q a_k} \Sigma e^{q+1} = S^{q+1} \cup_{\Sigma^q a_k} e^{q+2}$ since Σ is left adjoint of Ω in **TOP**_{*} and the pushout is took in **TOP**_{*}. Observe that $\pi_q(\operatorname{SP} X) \cong \pi_{q+1}(\operatorname{SP} \Sigma X)$, now we have done.

Since $\tilde{H}_n(X) \cong \tilde{H}_n(X \cup C^*) \cong H_n(X, *)$, we have

$$\pi_n(\operatorname{SP}(\bigvee_{i\in I} X_i)) = \tilde{H}_n(\bigvee_{i\in I} X_i) \cong H_n(\bigvee_{i\in I} X_i, *) \cong H_n(\coprod_{i\in I} X_i, \coprod_{i\in I} *) \cong \bigoplus_{i\in I} H_n(X_i, *) \cong \bigoplus_{i\in I} \pi_n(\operatorname{SP} X_i)$$

We can deduce the following proposition immediately:

Proposition 3.15. For finitely generated abelian group $G \cong (\bigoplus_r \mathbb{Z}) \oplus (\bigoplus_{1 \le i \le k} \mathbb{Z}/d_i\mathbb{Z})$, (where $r \in \mathbb{N}$, each $d_i \in \mathbb{Z}$) we have $\operatorname{SP}((\bigvee_r S^n) \lor (\bigvee_{1 \le i \le k} (S^n \cup_{a_{d_i}} e^{n+1})))$ is a K(G, n).

Since every abelian group G have a free resolution sequence:

$$0 \to \bigoplus_{a \in A} \mathbb{Z} \xrightarrow{f} \bigoplus_{b \in B} \mathbb{Z} \twoheadrightarrow G \to 0$$

exact. And for every group $G = F(X)/\langle Y \rangle_{nor}$ (where $F(X) := \prod_{x \in X} \mathbb{Z}_x$ is the free group functor and $\langle Y \rangle_{nor}$ is the normal subgroup generated by Y), we have:

$$1 \to \coprod_{y \in \langle Y \rangle_{nor}} \mathbb{Z}_y \xrightarrow{f: 1_y \mapsto y} \coprod_{x \in X} \mathbb{Z}_x \twoheadrightarrow G \to 1$$

exact.

Next proposition allows to construct spaces $M(\bigoplus_{a \in A} \mathbb{Z}, n)$ and $M(\coprod_{a \in A} \mathbb{Z}, 1)$:

Definition 3.4. For n > 1, G an abelian group, we have exact sequence

$$0 \to \bigoplus_{a \in A} \mathbb{Z} \xrightarrow{f} \bigoplus_{b \in B} \mathbb{Z} \twoheadrightarrow G \to 0$$

Then we have: (with ϕ is the map obtained using lemma 3.8)

$$\bigvee_{a \in A} S_a^n \xrightarrow{\phi} \bigvee_{b \in B} S_b^n \to C_\phi$$

the **Moore space** of type (G, n) is defined as $M(G, n) := C_{\phi}$.

For n = 1, G a group, we have exact sequence:

$$1 \to \coprod_{y \in \langle Y \rangle_{nor}} \mathbb{Z}_y \xrightarrow{f: 1_y \mapsto y} \coprod_{x \in X} \mathbb{Z}_x \twoheadrightarrow G \to 1$$

Then we have: (with ϕ is the map obtained using lemma 3.8)

$$\bigvee_{y \in \langle Y \rangle_{nor}} S^1_y \xrightarrow{\phi} \bigvee_{x \in X} S^1_x \to C_\phi$$

the **Moore space** of type (G, 1) is defined as $M(G, 1) := C_{\phi}$.

Proposition 3.16. $\pi_n(M(G, n)) = G$

Proof. For n > 1, use diagram:

To see:

Where q_* is induced by $q : (M_{\phi}, \bigvee_{a \in A} S_a^n) \to (C_{\phi}, *)$. $\bigvee_{a \in A} S_a^n$ is (n-1)-connected, implies $\pi_{n-1}(\bigvee_{a \in A} S_a^n) = 0$. $(M_{\phi}, \bigvee_{a \in A} S_a^n)$ is (n-1)-connected due to lemma 1.13. Therefore we have q_* is isomorphism using lemma 3.2. Diagram above reduces to:

$$0 \to \bigoplus_{a \in A} \mathbb{Z}_a \xrightarrow{f} \bigoplus_{b \in B} \mathbb{Z}_b \twoheadrightarrow \pi_n(M(G, n)) \to 0$$

For n = 1, use Seifert-van Kampen theorem.

Proposition 3.17. For any $n \ge 1$ and any group morphism $f: G \to G'$ there exist morphism $f_M: M(G,n) \to M(G',n)$ such that $f_{M*} = f$.

Proof. We have following for n > 1: (since free \mathbb{Z} -module is projective)

$$0 \longrightarrow \bigoplus_{a \in A} \mathbb{Z}_{a} \xrightarrow{i} \bigoplus_{b \in B} \mathbb{Z}_{b} \xrightarrow{q} G \longrightarrow 0$$
$$\downarrow^{r_{1}} \qquad \qquad \downarrow^{r_{0}} \qquad \qquad \downarrow^{f}$$
$$0 \longrightarrow \bigoplus_{a' \in A'} \mathbb{Z}_{a'} \xrightarrow{i'} \bigoplus_{b' \in B'} \mathbb{Z}_{b'} \xrightarrow{q'} G' \longrightarrow 0$$

And we have following for n = 1: (where $i(1_{1_a 1_b(1_{a \cdot b})^{-1}}) := 1_a 1_b(1_{a \cdot b})^{-1})$

$$1 \longrightarrow \coprod_{(a,b)\in(G,G)} \mathbb{Z}_{1_{a}1_{b}(1_{a\cdot b})^{-1}} \xrightarrow{i} \coprod_{g\in G} \mathbb{Z}_{g} \xrightarrow{q} G \longrightarrow 1$$
$$\downarrow^{r_{1}} \qquad \qquad \downarrow^{r_{0}} \qquad \qquad \downarrow^{f}$$
$$1 \longrightarrow \coprod_{(a',b')\in(G',G')} \mathbb{Z}_{1'_{a}1'_{b}(1_{a'\cdot b'})^{-1}} \xrightarrow{i'} \coprod_{g'\in G'} \mathbb{Z}_{g'} \xrightarrow{q'} \mathcal{S}' \longrightarrow 1$$

We could obtain: (use lemma 3.8)

$$\bigvee_{a \in A} S_a^n \xrightarrow{\phi} \bigvee_{b \in B} S_b^n \longrightarrow C_{\phi}$$

$$\begin{array}{c} \chi_1 \\ \chi_1 \\ \downarrow \\ & \swarrow \\ & \downarrow \\$$

Finally we have: (use universal property of cokernel)

Theorem 3.18. SP(M(G,n)) is a K(G,n) if G is abelian.

Proof. In the construction of Moore spaces, we have: (use notations in the construction)

which induces quasi-fibration SP $M_{\phi} \to \text{SP } C_{\phi}$ with fiber SP $\bigvee_{a \in A} S_a^n$. Then we have long exact sequence:

$$\cdots \to \pi_q(\operatorname{SP} \bigvee_{a \in A} S_a^n) \xrightarrow{\phi_*} \pi_q(\operatorname{SP} M_\phi) \to \pi_q(\operatorname{SP} C_\phi) \to \pi_{q-1}(\operatorname{SP} \bigvee_{a \in A} S_a^n) \to \cdots$$

Sequence above says if $q \neq n$ and $q \neq n+1$, then $\pi_q(\operatorname{SP} C_{\phi}) = 0$. If q = n+1, we have:

$$0 \longrightarrow \pi_{n+1}(C_{\phi}) \longrightarrow \pi_{n}(\operatorname{SP} \bigvee_{a \in A} S_{a}^{n}) \xrightarrow{\phi_{*}} \pi_{n}(\operatorname{SP} \bigvee_{b \in B} S_{b}^{n}) \longrightarrow \pi_{n}(C_{\phi}) \longrightarrow 0$$

$$||\mathcal{Q} \qquad ||\mathcal{Q} \qquad |$$

We have $\pi_{n+1}(C_{\phi}) = 0$ since ϕ_* is monomorphism.

Note. We have two equivalent ways to construct ordinary homology theory with coefficient $G \in \mathbf{Ab}$ from $H_n(-,-;\mathbb{Z})$:

- 1. Tensor cellular chain complex with $G: C_*(X) \otimes_{\mathbb{Z}} G$ (differentials are $d_n \otimes id_G$)
- 2. $H_n(X, A; G) := \tilde{H}_n((X \cup CA) \land M(G, n))$

Note. Construction of Eilenberg Mac-Lane space using Moore spaces is limited, there is another construction of K(G, n) allows non-abelian group G for n = 1. (use geometric realization)

Definition 3.5. The weak product of pointed $\{Z_i\}_{i \in \mathbb{Z}}$ spaces is

$$\prod_{i\in\mathbb{N}}^{\circ}Z_i:=\lim_{S\in\mathrm{Fin}(\mathbb{N})}(\prod_{i\in S}Z_i)$$

whose underlying set is:

$$\{(a_i)_{i\in\mathbb{N}}\in\prod_{i\in\mathbb{N}}Z_i\mid \text{only finite } a_i \text{ is not } * \}$$

Theorem following shows why K(G, n) is important:

Theorem 3.19. If Y is a path-connected commutative associative H-space with strict identity $(1 \cdot y = y)$, then there is a weak equivalence

$$\prod_{n\geq 1}^{\circ} K(\pi_n(Y), n) \to Y$$

Moreover, we have weak equivalence

$$\prod_{n\geq 1} K(\pi_n(Y), n) \to Y$$

Proof. Take free resolution of $\pi_n(Y)$:

$$0 \to \bigoplus_{a \in A} \mathbb{Z}_a \xrightarrow{\gamma} \bigoplus_{b \in B} \mathbb{Z}_b \xrightarrow{q} \pi_n(Y) \to 0$$

(for n = 1, replace \bigoplus with \coprod). and obtain:

$$\begin{array}{cccc} \bigvee_{a \in A} S_a^n & \stackrel{\phi}{\longrightarrow} & \bigvee_{b \in B} S_b^n & \longrightarrow & C_{\phi} \cong M(\pi_n(Y, n)) \\ & \downarrow & & & \downarrow \\ & \downarrow & & \downarrow \\ & \ast & & & \downarrow \\ & \ast & & & & i \end{array} \xrightarrow{f'_n} Y & \stackrel{f'_n}{\longrightarrow} & C_i \simeq Y \end{array}$$

where $[g'_b] = q(1_b)$. We have $f'_{n*} : \pi_n(M(\pi_n(Y), n)) \to \pi_n(Y)$ is an isomorphism. Construct $f'^k_n : \prod_k M(\pi_n(Y), n) \to Y$ by:

$$f_n^{\prime k} : \prod_k M(\pi_n(Y), n) \to Y$$
$$(a_1, a_2, \dots, a_k) \mapsto f(a_1) \cdot f(a_2) \cdots f(a_k)$$

where $-\cdot - : Y \times Y \to Y$ is the *H*-multiplication on *Y*.

Strict identity, commutativity and associativity says it is homotopically unique rel *. Therefore we have a well-defined map $f_n^k : \operatorname{SP}^k M(\pi_n(Y), n) \to Y$ (for each k) which commutes with inclusion $\operatorname{SP}^k \hookrightarrow \operatorname{SP}^{k+1}$.

Directly from above, we have $f_n : \operatorname{SP} M(\pi_n(Y), n) \to Y$ induces isomorphism on $\pi_n(-)$. (in case $n = 1, \pi_1(Y)$ is abelian since Y is a commutative H-space)

Similarly we have $f : \operatorname{SP}(\bigvee_n M(\pi_n(Y), n)) \to Y$ obtained from $\bigvee_n f'_n : \bigvee_n M(\pi_n(Y), n) \to Y$.

 $\operatorname{SP}(\bigvee_n M(\pi_n(Y), n)) \approx \prod_n \operatorname{SP} M(\pi_n(Y), n)$ since we have $\operatorname{SP}(X_1 \vee X_2) \approx \operatorname{SP} X_1 \times \operatorname{SP} X_2$ and SP commute with directed colimit. We can deduce that $f|_{\operatorname{SP} M(\pi_n(Y), n)} = f_n$ from construction of the homeomorphism.

Last, $\prod_{n\geq 1} K(\pi_n(Y), n) \hookrightarrow \prod_{n\geq 1} K(\pi_n(Y), n)$ is weak homotopy equivalence since S^n have compact image. (is homotopy equivalence since they are CW-complexes)

Corollary 3.20. If Y is a space, then there is a weak equivalence

$$\prod_{n\geq 1}^{\circ} K(H_n(Y), n) \to \operatorname{SP} Y$$

Moreover, we have weak equivalence

$$\prod_{n\geq 1} K(H_n(Y), n) \to \operatorname{SP} Y$$

4 Cohomology and Spectra

4.1 Axiom for Cohomology and reduced Cohomology

Definition 4.1. An Unreduced **Generalized Cohomology Theory** (E^*, δ) is a functor to the category of \mathbb{Z} -graded abelian groups:

 $E^*(-,-)$: **TOP**_{CW}(2)^{op} \rightarrow **Ab**^{\mathbb{Z}}, with a natural transformation of degree +1: $\delta_{n,(X,A)}: E^n(A, \emptyset) \rightarrow E^{n+1}(X, A)$ (called connecting homomorphism) satisfying following 3 axioms:

• Homotopy Invariance:

Homotopy equivalence of pairs $f: (X, A) \to (Y, B)$ induces isomorphism

 $E^*(f): E^*(Y,B) \to E^*(X,A)$

• Long Exact Sequence:

Map $A \hookrightarrow X$ induces a long exact sequence together with δ :

$$\cdots E^n(X,A) \to E^n(X) \to E^n(A) \xrightarrow{\delta} E^{n+1}(X,A) \to \cdots$$

where $E^n(X) := E^n(X, \emptyset)$.

• Excision:

If (X; A, B) is an **excisive triad** (that is, $X = A \cup B$), then inclusion $(A, A \cap B) \hookrightarrow (X, B)$ induces isomorphism

$$E^*(A, A \cap B) \cong E^*(X, B)$$

We say (E^*, δ) is **additive** if in addition:

• Additivity:

If $(X, A) = \coprod_{\lambda} (X_{\lambda}, A_{\lambda})$ in **TOP**_{CW}(2), then inclusions $i_{\lambda} : (X_{\lambda}, A_{\lambda}) \to (X, A)$ induces isomorphism

$$(\prod i_{*,\lambda}): E^*(X,A) \cong \prod E^*(X_\lambda,A_\lambda)$$

We say (E^*, δ) is **ordinary** if (E^*, δ) satisfy all axioms above and:

• Dimension:

$$E^{*\neq 0}(*,\emptyset) = 0$$

An unreduced ordinary cohomology theory is called with coefficient G if $E^0(*, \emptyset) = G$.

Definition 4.2. An **Reduced Generalized Cohomology Theory** (\tilde{E}^*, σ) is a functor from opposite of category of pointed CW-complexes to the category of \mathbb{Z} -graded abelian groups: $\tilde{E}^*(-): \mathbf{TOP}_{\mathbf{CW}}^{*/ \text{op}} \to \mathbf{Ab}^{\mathbb{Z}},$ with a natural isomorphism of degree +1: $\sigma: \tilde{E}^*(-) \cong \tilde{E}^{*+1}(\Sigma(-))$ (called suspension isomorphism)

satisfying following 2 axioms:

• Homotopy Invariance:

Homotopic pointed maps $f,g:X\to Y$ induces same map:

$$\tilde{E}^*(f) = \tilde{E}^*(g) : \tilde{E}^*(Y) \to \tilde{E}^*(X)$$

• Exactness: Pointed map $i: A \hookrightarrow X$ and $j: X \hookrightarrow C_i$ gives a exact sequence in $\mathbf{Ab}^{\mathbb{Z}}$

$$\tilde{E}(C_i) \xrightarrow{\tilde{E}^*(j)} \tilde{E}^*(X) \xrightarrow{\tilde{E}^*(j)} \tilde{E}^*(A)$$

We say (\tilde{E}^*, σ) is **additive** if in addition:

• Wedge Axiom:

The canonical comparison morphism (induced by morphisms $X_i \hookrightarrow \bigvee_i X_i$)

$$\tilde{E}^*(\bigvee_i X_i) \to \prod_i \tilde{E}^*(X_i)$$

is isomorphism.

We say (\tilde{E}^*, σ) is **ordinary** if (\tilde{E}^*, σ) satisfy all axioms above and:

• Dimension:

$$\tilde{E}^{*\neq 0}(S^0) = 0$$

A reduced ordinary cohomology theory is called with coefficient G if $\tilde{E}^0(S^0) = G$.

Note. They are related to each other by $E^*(X, A) := \tilde{E}^*(X \cup CA)$ and $\tilde{E}^* := E^*(X, *)$. (proof is omitted)

4.2 Brown Representability Theorem

We will prove that any additive reduced cohomology theory is naturally isomorphic to some $[-, Y]_*$.

Definition 4.3. $C_0 := \text{Ho}(C)$, where C is category of path-connected pointed CW-complexes.

Definition 4.4. A weak limit/colimit is just ordinary limit/colimit without the uniqueness its in universal property.

Lemma 4.1. C_0 have weak coequalizers

Proof. If we have map $f, g : A \to X$ in C_0 then define $Z := X_1 \cup_f (A \times I) \cup_g X_2/(x,0) \sim (x,1)$ where $X_1 = X \times \{0\}, X_2 = X \times \{1\}, j : X \hookrightarrow Z$ is the weak coequalizer map. $i : A \times I \hookrightarrow Z$ is the homotopy $j \circ f \simeq j \circ g$.

For $s: X \to Y$ such that there is $h: s \circ f \simeq s \circ g$, we have $s \cup h \cup s: X_1 \cup_f (A \times I) \cup_g X_2 \to Y$, and it defines a map $s': Z \to Y$ such that $s' \circ j = s$.

Lemma 4.2. Suppose $\{Y_n\}_{n\in\mathbb{N}}$ is a sequence of objects in C_0 with for all $n\in\mathbb{N}$, $i_n:Y_n\hookrightarrow Y_{n+1}$ is cofibration.

Let $Y := \varinjlim_n Y_n$, then there is coequalizer diagram:

$$\bigvee_n Y_n \xrightarrow[]{\bigvee_n i_n} \bigvee_n Y_n \xrightarrow[]{\bigvee_n j_n} Y$$

where $j_n: Y_n \hookrightarrow Y_{n+1} \hookrightarrow Y$.

Proof. $j_{n+1} \circ i_n = j_n \circ \operatorname{id}_{Y_n}$, and if we have $g : \bigvee_n Y_n \to Z$ such that $g \circ \bigvee_n i_n \simeq g \circ \bigvee_n \operatorname{id}_{Y_n}$. Define $g_n := g|_{Y_n}$, use induction on n and HEP of cofibration, we have $g'_n \simeq g_n$ such that $g'_{n+1} \circ i_n = g'_n$, there data together defines a $g' : Y \to Z$ satisfy desired properties.

Definition 4.5. A **Brown functor** is a functor $H : C_0^{\text{op}} \to \mathbf{Set}^{*/}$ send coproducts to products, weak coequalizers to weak equalizers:

$$H(\bigvee_{i} X_{i}) \cong \prod_{i} H(X_{i})$$

 $\begin{array}{l} \text{If } j:X \to Z \text{ is coequalizer of } f,g:A \to X,\\ \text{then } H(j):H(Z) \to H(X) \text{ is equalizer of } H(f), H(g):H(X) \to H(A). \end{array}$

Note. Every additive reduced cohomology theory $\tilde{E}^n(-)$: $\mathbf{TOP}_{\mathbf{CW}}^{*/} \to \mathbf{Ab} \to \mathbf{Set}^{*/}$ is equivalent to a Brown functor.

Definition 4.6. Any $u \in H(Y)$ determine a natural transformation $T_u: [-,Y]_* \to H(-)$ by

where $a \in [X', X]$.

 $u \in H(Y)$ is *n*-universal $(n \ge 1)$ if $T_{u,S^q} : [S^q, Y]_* \to H(S^q)$ is isomorphism for $1 \le q \le n-1$ and epimorphism for q = n.

 $u \in H(Y)$ is **universal** if u is n-universal forall $n \ge 1$.

Y is called an **classifying space** for H if there exists $u \in H(Y)$ that is universal.

Lemma 4.3. If H is a Brown functor, $Y, Y' \in C_0$, $u \in H(Y)$, $u' \in H(Y')$ are universal, and there is a map $f: Y \to Y'$ such that H(f)(u') = u, then f is a weak equivalence.

Proof. Directly from T_{u,S^q} , T_{u',S^q} are isomorphisms:

Lemma 4.4. If H is a Brown functor, $Y \in C_0$ and $u \in H(Y)$, then there exists $Y' \in C_0$ obtained from Y by attaching 1-cells, and a 1-universal element $u' \in H(Y')$ such that $H(i)(u') = u \in H(Y)$. (where $i : Y \hookrightarrow Y'$)

 $\begin{array}{l} \textbf{Proof. Let } Y' := Y \lor (\bigvee_{a \in H(Y)} S_a^1), \, H(i) \text{ is just projection:} \\ H(Y') \cong (H(Y) \times \prod_{a \in H(S^1)} H(S_a^1)) \to H(Y). \\ \textbf{Let } g_a := S^1 \approx S_a^1 \hookrightarrow Y', \\ u' := (u, \prod_a a) \in H(Y) \times H(\bigvee_{a \in H(S^1)} S_a^1). \\ T_{u',S^1} : [S^1, Y']_* \to H(S^1) \text{ is epimorphism since } H(g_a)(u') = a \in H(S^1). \end{array}$

Lemma 4.5. If H is a Brown functor, $Y \in C_0$ and $u \in H(Y)$ is n-universal $(n \ge 1)$, then there exists $Y' \in C_0$ obtained from Y by attaching (n + 1)-cells, and a (n + 1)-universal element $u' \in H(Y')$ such that $H(i)(u') = u \in H(Y)$. (where $i : Y \hookrightarrow Y'$)

Proof. Let $K := \ker(T_{u,S^n})$, we have:

$$* \to K \hookrightarrow [S^n, Y]_* \xrightarrow{T_{u,S^n}} H(S^n) \to *$$

Let $Y_1 := Y \vee (\bigvee_{i \in H(S^{n+1})} S_i^{n+1})$. We notice a cofib sequence:

$$\bigvee_{k \in K} S_k^n \xrightarrow{f} Y_1 \to C_f$$

where $f := \bigvee_{k \in K} k$. Let $Y' := C_f$.

 $u_1 := (u, \prod_{a \in H(S^{n+1})} a) \in H(Y_1)$ where $g_a := S^{n+1} \approx S_a^{n+1} \hookrightarrow Y_1$. The cofib sequence is just a weak coequalizer diagram in C_0 :

$$\bigvee_{k \in K} S_k^n \xrightarrow{f} Y_1 \longrightarrow Y'$$

Apply H on it:

$$H(Y') \longrightarrow H(Y_1) \Longrightarrow H(\bigvee_{k \in K} S_k^n)$$

We have $H(f)(u_1) = \prod_{k \in K} H(k)(u_1) = \prod_{k \in K} H(k)(u) = \prod_{k \in K} T_{u,S^n}(k) = 0 = H(0)(u_1).$ By definition of weak equalizer, there exists $u' \in H(Y')$ such that $H(i)(u') = u \in H(Y)$. $(i: Y \hookrightarrow Y')$

Verify that u' is (n+1)-universal:

 $T_{u',S^{n+1}}$ is epimorphism since $T_{u',S^{n+1}}(i_1 \circ g_a) = T_{u_1,S^{n+1}}(g_a) = a \in H(S^{n+1})$. Current goal is to prove $T_{u',S^q}, q \leq n$ are isomorphisms. We have commutative diagram:

$$\pi_{q+1}(Y',Y) \longrightarrow \pi_q(Y) \xrightarrow{i_*} \pi_q(Y') \longrightarrow \pi_q(Y',Y)$$

$$T_{u,S^q} \downarrow \qquad T_{u',S^q}$$

$$H(S^q)$$

And we notice that $\pi_q(Y', Y) = 0$ for $q \le n$. Then we have

 T_{u,S^q} is isomorphism for q < n and epimorphism for q = n implies that

 T_{u',S^q} is isomorphism for q < n and epimorphism for q = n. For any $k \in K \hookrightarrow \pi_n(Y)$, $i \circ k = 0 \in \pi_n(Y')$. That is, $K \subseteq \ker(i_*)$. And we also have $\ker(i_*) \subseteq K$, since $T_{u',S^n} \circ i_* = T_{u,S^n}$. $\ker(i_*) = K := \ker(T_{u,S^n})$ implies that T_{u',S^n} is isomorphism.

Theorem 4.6. *H* is a Brown functor, $Y \in C_0$ and $u \in H(Y)$ then there is a classifying space Y' for *H* such that (Y', Y) is a relative *CW*-complex and the universal element $u' \in H(Y')$ satisfying H(i)(u') = u. $(i : Y \hookrightarrow Y')$

Proof. Construct spaces $\{Y_n\}_{n\in\mathbb{N}}$ and $u_n\in H(Y_n)$ as following:

- 1. $Y_0 := Y, u_0 := u$
- 2. Y_1, u_1 is obtained from lemma 4.4.
- 3. Use lemma 4.5 to construct Y_{n+1}, u_{n+1} from Y_n, u_n .

Let $Y' := \varinjlim \{Y_0 \hookrightarrow \cdots \hookrightarrow Y_n \hookrightarrow Y_{n+1} \hookrightarrow \cdots\}$ then we have weak equalizer diagram:

$$H(Y') \longrightarrow \prod_{n} H(Y_{n}) \xrightarrow[n \in \mathbb{N}]{\prod_{n \in \mathbb{N}} H(i_{n})} \prod_{n \in \mathbb{N}} H(Y_{n})$$

and

$$(\prod_{n\in\mathbb{N}}H(i_n))(\prod_{n\in\mathbb{N}}u_n)=\prod_{n\in\mathbb{N}}u_n=\prod_{n\in\mathbb{N}}H(\mathrm{id}_{Y_n})(\prod_{n\in\mathbb{N}}u_n)$$

(by $H(i_n)(u_{n+1}) = u_n$) Then there exists $u' \in H(Y')$ satisfying $\forall n \in \mathbb{N}, \ H(j_n) = u_n$. (where $j_n : Y_n \hookrightarrow Y'$)

Verify that u' is universal:

$$\pi_q(Y_{q+1}) \xrightarrow{} \pi_q(Y_{q+2}) \xrightarrow{} \cdots \xrightarrow{} \pi_q(Y')$$
$$\cong \xrightarrow{} \cong \xrightarrow{} H(S^q)$$

(The isomorphisms in diagram are T_{u_{q+1},S^q} , T_{u_{q+2},S^q} , T_{u',S^q}).

Corollary 4.7. For any Brown functor H, there exist classifying spaces for H which are CW complexes.

Proof. Use theorem 4.6 with Y = *.

Lemma 4.8. *H* is a Brown functor, $u \in H(Y)$ is a universal element, $i : A \hookrightarrow X$ is a relative CW-complex. Given map $g : A \to Y$ and $v \in H(X)$ satisfy:

$$H(X) \ni v$$

$$\downarrow$$

$$H(Y) \ni u \longrightarrow H(A) \ni H(g)(u) = H(i)(v)$$

Then exists map $g': X \to Y$ such that $g'|_A = g$ and diagram:

commutes.

Proof. Let (Z, j) be weak coequalizer of the diagram:

$$\begin{array}{ccc} A & & \stackrel{i}{\longrightarrow} & X \\ g \\ \downarrow & & & \downarrow^{i_1} \\ Y & & \stackrel{i_2}{\longrightarrow} & X \lor Y \end{array}$$

then we have weak equalizer diagram:

$$H(Z) \longrightarrow H(X) \times H(Y) \xrightarrow[H(i_1 \circ i)]{H(i_1 \circ i)} H(A)$$

We also have

$$H(A) \xleftarrow{H(i)} H(X)$$

$$H(g) \uparrow \qquad \uparrow^{p_1 = H(i_1)}$$

$$H(Y) \xleftarrow{p_2 = H(i_2)} H(X) \times H(Y)$$

which implies $H(i) \circ H(i_1)(v, u) = H(i)(v) = H(g)(u) = H(g) \circ H(i_2)(v, u)$. Then there is a element $u^+ \in H(Z)$ such that $H(j)(u^+) = (v, u)$. Use theorem 4.6 to obtain relative CW-complex (Z', Z) and universal element $u' \in H(Z')$ such that $H(i_Z)(u') = u^+$. $(i_Z : Z \hookrightarrow Z')$ By lemma 4.3, $j' := i_Z \circ j \circ i_2 : Y \hookrightarrow X \lor Y \hookrightarrow Z \hookrightarrow Z'$ is a weak equivalence. We also have diagram in $\mathbf{TOP}_{CW}^{*/}$: (since (Z, j) is weak coequalizer in C_0)

$$\begin{array}{ccc} A & & \stackrel{i}{\longrightarrow} X \\ g \\ \downarrow & & \downarrow i_{Z \circ j \circ i} \\ Y & & \downarrow i_{Z \circ j \circ i} \\ Y & & \stackrel{j'}{\longrightarrow} Z' \end{array}$$

Apply HELP:

$$\begin{array}{ccc} A & & \stackrel{i}{\longrightarrow} X \\ g & & \swarrow & & \\ g & & \swarrow & & \\ g' & & & \downarrow^{i_Z \circ j \circ i_1} \\ Y & & \xrightarrow{g'} & & Z' \end{array}$$

and verify that $H(g')(u) = H(g') \circ H(j')(u') = H(i_Z \circ j \circ i_1)u' = H(i_1) \circ H(j)(u^+) = H(i_1)(v, u) = v.$

Theorem 4.9. If Y is a classifying space for a Brown functor H and $u \in H(Y)$ is a universal element, then $T_u : [-,Y] \to H(-)$ is a natural isomorphism.

Proof. $T_{u,X}$ is epimorphism: For $v \in H(X)$, use lemma 4.8 with (X, A) := (X, *) to obtain a map $g' : X \to Y$ such that $T_{u,X}(g') = H(g')(u) = v$. $T_{u,X}$ is monomorphism: Let $f_0, f_1 : X \to Y$ such that $T_{u,X}(f_1) = T_{u,X}(f_2)$. Define CW-complex $X' := X \times I/\{*\} \times I$ with CW-structure $X'^q = (X^q \times \partial I \cup X^{q-1} \times I)/\{*\} \times I$ for $q \ge 0$. Define $h : X' \to X$ by $\overline{(x,t)} \mapsto x$ and define $v \in H(X')$ by $v = H(f_0 \circ h)(u)$. Let $A' := X \vee X = X \times \partial I/\{*\} \times \partial I, i : A' \hookrightarrow X'$ and define $f : A' \to Y$ by $(a, 0) \mapsto f_0(a), (a, 1) \mapsto f_1(a)$. Then we have $H(f)(u) = (H(f_0)(u), H(f_1)(u)) = (H(f_0)(u), H(f_0)(u)) = H(f_0 \circ h \circ i)(u) = H(i)(v)$. Use lemma 4.8 with (X, A) = (X', A') to obtain a $f' : X' \to Y$ such that $f'|_{A'} = f$ and H(f')(u) = v. $h : X \times I \to X' \xrightarrow{f'} Y$ is the desired homotopy $g_0 \simeq g_1$.

Corollary 4.10. If Y, Y' are classifying spaces of a Brown functor H, and $u \in H(Y), u' \in H(Y')$ are their universal elements, then there is a homotopy equivalence $f : Y \to Y$ which is unique up to homotopy and satisfy H(f)(u') = u.

Proof. By theorem 4.9, $T_{u',Y} : [Y,Y'] \to H(Y)$ is isomorphism. Then there is unique f : [Y,Y'] such that $T_{u',Y}(f) = u$. (notice that $T_{u',Y}(f) = H(f)(u')$) By lemma 4.3 and theorem 1.9, f is homotopy equivalence.

Definition 4.7. A sequential pre-spectrum in topological spaces is:

- A N-graded compactly generated space : $X_* := \{X_n \in \mathbf{TOP}_{\mathbf{CG}}^{*/}\}_{n \in \mathbb{N}}$.
- Structure maps : $\{\sigma_n : \Sigma X_n \to X_{n+1}\}_{n \in \mathbb{N}}$.

Map between sequential pre-spectra is map between N-graded spaces $f_n: X_n \to Y_n$ such that

$$\begin{array}{c|c} \Sigma X_n & \stackrel{\Sigma f_n}{\longrightarrow} \Sigma Y_n \\ \sigma_n & & & \downarrow \sigma'_n \\ X_{n+1} & \stackrel{f_{n+1}}{\longrightarrow} Y_{n+1} \end{array}$$

commutes.

An Ω -prespectrum is a sequential spectrum X_* with adjoints of structure maps $\sigma_n : X_n \to \Omega X_{n+1}$ are weak equivalences.

For an Ω -prespectrum X_* , we can extend it into a \mathbb{Z} -graded space by setting $X_{-n} := \Omega^n X_0$.

Theorem 4.11. If (\tilde{E}^*, σ) is a reduced additive cohomology theory, then there exist homotopically unique Ω -prespectrum Y_* (each Y_n is a CW-complex) such that $E^n(-) \cong [-, Y_n]_*$ naturally. (naturality implies diagram below commutes)

If Y_* is an Ω -prespectrum, then $\tilde{E}^n := [-, Y_n]_*, \sigma_n : [-, Y_n]_* \to [-, \Omega Y_{n+1}] \cong [\Sigma(-), Y_{n+1}]$ is a reduced additive cohomology theory.

Definition 4.8. For an abelian group A, the **Eilenberg-Mac Lane prespectrum** KA_* is defined by $KA_n := K(A, n)$. Structure maps is $KA_n \to M \to \Omega KA_{n+1}$ where M is a CW-approximation of ΩKA_{n+1} , and homotopy equivalence $KA_n \to M$ is obtained from corollary 4.10.

Proposition 4.12. If a reduced additive cohomology theory \tilde{H}^*, σ is ordinary, then $\tilde{H}^n(-) \cong [-, KA_n]_*$ naturally.

Proof.

5 Towers And Homotopy Limits

5.1 Pointed and Unpointed Homotopy Classes

Proposition 5.1. There are pointed spaces $X, Y \in \mathbf{TOP}^{*/}$, if X is well-pointed, then there is a right action of $\pi_1(Y, y_0)$ on $[X, Y]_*$.

Proof. The right action is given by: $[f] \cdot [a] := [\hat{f}_{a,1}]$ where $\hat{f}_{a,1} := \hat{f}_a(-,1)$

Verify it is well-defined:

By the property of closed cofibration, \hat{f}_a is unique up to homotopy, hence independent from choice of $a \in [a]$ and $f \in [f]$.

Verify it is an group action:

If e is the constant loop in $\pi_1(Y, y_0)$, then $\hat{f}_e(x, t) = f(x)$. If $[a], [b] \in \pi_1(Y, y_0)$ then $[f] \cdot [a] = [\hat{f}_{a,1}], ([f] \cdot [a]) \cdot [b] = [(\hat{a}, f_{b,1}])$. define

$$\begin{aligned} \boldsymbol{x} : \boldsymbol{X} \times \boldsymbol{I} &\to \boldsymbol{Y} \\ (\boldsymbol{x}, t) &\mapsto \begin{cases} \hat{f}_a(\boldsymbol{x}, 2t) & t \leq 1/2 \\ \hat{(f}_{a,1})_b(\boldsymbol{x}, 2t-1) & t \geq 1/2 \end{cases} \end{aligned}$$

Since h(-,0) = f, $h(x_0,-) = a \cdot b$ $h \simeq \hat{f}_{a \cdot b}$. $[f] \cdot ([a] \cdot [b]) = [\hat{f}_{a \cdot b}(-,1)] = [h(-,1)] = ([f] \cdot [a]) \cdot [b]$.

Theorem 5.2. If $X, Y \in \mathbf{TOP}^{*/}$ there is a forgetful map $\phi : [X, Y]_* \to [X, Y]$ where [X, Y] is the **free** homotopy class of (not necessarily pointed) maps $X \to Y$. If (X, x_0) is well-pointed and Y is path-connected, then ϕ induces bijection $\overline{\phi} : [X, Y]_*/\pi_1(Y, y_0) \cong [X, Y]$.

Proof. $\overline{\phi}$ is well-defined:

For any $a \in \pi_1(Y, y_0)$, f is freely homotopic to $\hat{f}_a(-, 1)$. $\overline{\phi}$ is injective:

If we have $\phi([f]) = \phi([g])$ which means there is free homotopy $h : f \simeq g$, let $a := h(x_0, -)$, then $h \simeq \hat{f}_a, [f] \cdot [a] = [h(-, 1)] = [g].$ ϕ is surjective:

Suppose $g \in \text{Hom}_{\mathbf{TOP}}(X, Y)$ is an unpointed map, choose a path $a : g(x_0) \simeq y_0$, extend a, g:

 $\phi([h(-,1)]) = [g].$

Theorem 5.3. If (W, e) is a well-pointed H-space, $\mu : W \times W \to W$ is its H-multiplication. Then μ is homotopic to another H-multiplication μ' such that $\mu'(-, e) = id_W = \mu'(e, -)$ is strict identity.

Proof. Let $l := \mu \circ (e, \operatorname{id}_W) \simeq \operatorname{id}_W, r := \mu \circ (\operatorname{id}_W, e) \simeq \operatorname{id}_W,$

$$h: W \lor W \times I \to W$$
$$(w, e, t) \mapsto r(w, t)$$
$$(e, w, t) \mapsto l(w, t)$$

Then we have diagram: (since $W \lor W \to W \times W$ is cofib)

 $\mu' := \hat{h}(-, -, 1).$

Proposition 5.4. If (X, x_0) is well-pointed space, (W, e) is a well-pointed H-space, then $\pi_1(W, e)$ acts trivially on $[X, W]_*$

Proof. For $[f] \in [X, W]_*$, $a \in \pi_1(W, e)$ define

$$\begin{aligned} h: X \times I \to W \\ (x,t) \mapsto \mu'(f(x), a(t)) \end{aligned}$$

 $[f] \cdot [a] = [h(-,1)] = [f] \text{ since } h \simeq \hat{f}_a.$

Corollary 5.5. If (X, x_0) is well-pointed space, (Y, e) is a well-pointed path-connected H-space, then $\phi : [X, Y]_* \to [X, Y]$ is a bijection.

Theorem 5.6. X is a space with every point well-pointed, $\pi_{\leq 1}(X)$ is the fundamental groupoid of X there are functors

$$\Psi_n : \pi_{\leq 1}(X) \to \mathbf{Grp}$$
$$x_0 \mapsto \pi_n(X, x_0)$$
$$\operatorname{Hom}_{\pi_{\leq 1}(X)}(x_0, x_1) \ni [a] \mapsto ([S^n, X]_* \ni [f] \mapsto [\hat{f}_a(-, 1)])$$

with property : for every $f: X \to Y, [a] \in \operatorname{Hom}_{\pi_{<1}(X)}(x_0, x_1)$ diagram

commutes.

Lemma 5.7. Assume X, Y, Z are path-connected and well-pointed. Consider functor $[-, Z]_*$ apply on **Barratt-Puppe sequence**

$$\cdots \to [\Sigma Y, Z]_* \xrightarrow{\Sigma f^*} [\Sigma X, Z]_* \xrightarrow{q^*} [C_f, Z]_* \xrightarrow{i^*} [Y, Z]_* \xrightarrow{f^*} [X, Z]_*$$

The sequence is exact (in category $\mathbf{Set}^{*/}$), and we have following:

- 1. $[\Sigma X, Z]_*$ acts from right on $[C_f, Z]_*$.
- 2. $q^* : [\Sigma X, Z]_* \to [C_f, Z]_*$ is a map between right $[\Sigma X, Z]_*$ -sets.
- 3. $q^*([x]) = q^*([x'])$ iff exists some $[y] \in [\Sigma Y, Z]_*$ such that $[x] = \Sigma f^*([y]) \cdot [x']$.
- 4. $i^{*}([z]) = i^{*}([z'])$ iff exists some $[x] \in [\Sigma X, Z]_{*}$ such that $[z] = [z'] \cdot [x]$.
- 5. Im $(\Sigma q^* : [\Sigma^2 X, Z]_* \to [\Sigma C_f, Z]_*)$ is central subgroup of $[\Sigma C_f, Z]_*$.

Proof. 1. Define *h*-coaction map:

$$u_f : C_f \to C_f \lor \Sigma X$$

$$(y,0) \mapsto (y,0)$$

$$\overline{(x,t)} \mapsto \begin{cases} \overline{(x,2t)} \in C_f & t \le 1/2 \\ \overline{(x,2t-1)} \in \Sigma X & t \ge 1/2 \end{cases}$$

2.

$$C_f \xrightarrow{q} \Sigma X$$

$$u_f \downarrow \qquad \qquad \downarrow u_{X \to *}$$

$$C_f \lor \Sigma X_{q \lor id_{\Sigma X}} \Sigma X \lor \Sigma X$$

3. $q^*([x]) = q^*([x']) \Leftrightarrow q^*([x] \cdot [x']^{-1}) = * \Leftrightarrow$ there exists some $[y] \in [\Sigma Y, Z]_*$ such that $[x] \cdot [x']^{-1} = \Sigma f^*(y)$.

4. If $i^*([z]) = i^*([z'])$, then there are maps $c \simeq z$, $c' \simeq z'$ such that $c|_Y = c'|_Y$. (use HEP) Define

$$\begin{aligned} x: \Sigma X \to Z \\ \hline (x,t) \mapsto \begin{cases} c'(x,1-2t) & t \le 1/2 \\ c(x,2t-1) & t \ge 1/2 \end{cases} \end{aligned}$$

we have $[c] = [c'] \cdot [x]$.

5. Let $G := [\Sigma C_f, Z]$, $H := \operatorname{Im}(\Sigma q^*)$. Σu_f gives the right action \star of H on G. It is different from the usual product \cdot (given by $v_{\Sigma C_f}$) on G:

$$\begin{split} v_{\Sigma C_f} &: \Sigma C_f \to \Sigma C_{f_0} \vee \Sigma C_{f_1} \\ & (c,t) \mapsto \begin{cases} (c,2t)_0 & t \leq 1/2 \\ (c,2t-1)_1 & t \geq 1/2 \end{cases} \\ \Sigma u_f &: \Sigma C_f \to \Sigma C_f \vee \Sigma^2 X \\ \hline \hline (y,0,t) \mapsto \overline{(y,0,t)} \\ \hline \hline \hline (x,s,t) \mapsto \begin{cases} \hline (x,2s,t) \in \Sigma C_f & s \leq 1/2 \\ \hline (x,2s-1,t) \in \Sigma^2 X & s \geq 1/2 \end{cases} \end{split}$$

And we have $(g \star h) \cdot (g' \star h') = (g \cdot g') \star (h \cdot h')$, which is equivalent to commutativity of diagram below.

Verify the commutativity:

$$\begin{split} & C_f \to \Sigma C_{f_0} \vee \Sigma C_{f_1} \vee \Sigma^2 X_0 \vee \Sigma^2 X_1 \\ & \overline{(y,0,t)} \mapsto \begin{cases} \overline{(y,0,2t)}_0 & t \leq 1/2 \\ \hline \overline{(y,0,2t-1)}_1 & t \geq 1/2 \end{cases} \\ & \overline{(x,s,t)} \mapsto \begin{cases} \overline{(x,2s,2t)}_0 \in \Sigma C_{f_0} & s \leq 1/2, t \leq 1/2 \\ \hline \overline{(x,2s-1,2t)}_0 \in \Sigma^2 X_0 & s \geq 1/2, t \leq 1/2 \\ \hline \overline{(x,2s,2t-1)}_1 \in \Sigma C_{f_1} & s \leq 1/2, t \geq 1/2 \\ \hline \overline{(x,2s-1,2t-1)}_1 \in \Sigma^2 X_1 & s \geq 1/2, t \geq 1/2 \end{cases} \end{split}$$

Final step:

$$g \cdot h = (g \star 1) \cdot (1 \star h) = (g \cdot 1) \star (1 \cdot h)$$

= (1 \cdot g) \times (h \cdot 1) = (1 \times h) \cdot (g \times 1) = h \cdot g

Lemma 5.8. Assume X, Y, Z are path-connected and well-pointed. (dual version of lemma 5.7.) We have long exact sequence for any $f: X \to Y$: (in category $\mathbf{Set}^{*/}$)

$$\cdots \to [Z, \Omega X]_* \xrightarrow{\Omega f_*} [Z, \Omega Y]_* \xrightarrow{j_*} [Z, P_f]_* \xrightarrow{p_*} [Z, X]_* \xrightarrow{f_*} [Z, Y]_*$$

And we have following:

1. $[Z, \Omega Y]_*$ acts from right on $[Z, P_f]_*$. 2. $j_* : [Z, \Omega Y]_* \to [Z, P_f]_*$ is a map between right $[Z, \Omega Y]_*$ -sets. 3. $j_*([y]) = j_*([y'])$ iff exists some $[x] \in [Z, \Omega X]_*$ such that $[y] = \Omega f_*([x]) \cdot [y']$. 4. $p_*([z]) = p_*([z'])$ iff exists some $[y] \in [Z, \Omega Y]_*$ such that $[z] = [z'] \cdot [y]$. 5. $\operatorname{Im}(\Omega j_* : [Z, \Omega^2 Y]_* \to [Z, \Omega P_f]_*)$ is central subgroup of $[Z, \Omega P_f]_*$.

Consider lemma 5.8 with $f = i : F_b \hookrightarrow E$ is a obtained from a Hurewicz fibration $p : E \to B$.

Lemma 5.9. If there is a surjective Hurewicz fibration $p: E \to B$ between spaces with every point is well-pointed, and B is path-connected, then there are functors $\Lambda_{E,p}: \pi_{\leq 1}(E) \to \operatorname{Ho}(\operatorname{\mathbf{TOP}}^{*/})$ restricts to give group homomorphisms $\pi_1(E, e) \to \operatorname{Aut}_{\operatorname{Ho}(\operatorname{\mathbf{TOP}}^{*/})}(F_e)$ (where F_e is the path-connected component of $F_{p(e)}$ containing e) and $\Lambda_{B,p}: \pi_{\leq 1}(B) \to \operatorname{Ho}(\operatorname{\mathbf{TOP}})$ satisfying

$$\begin{array}{c} \pi_{\leq 1}(E) \xrightarrow{\pi_{\leq 1}(p)} \pi_{\leq 1}(B) \\ & & & \\ \Lambda_{E,p} \\ & & & \\ & & & \\ & &$$

commutes up to a natural transformation η .

Proof. Construction of the two functors:

$$\Lambda_{B,p} : \pi_{\leq 1}(B) \to \operatorname{Ho}(\mathbf{TOP})$$
$$b \mapsto F_b := p^{-1}(b)$$
$$[\alpha : b \simeq b'] \mapsto [\alpha^+(-,1) : F_b \to F_b']$$

where α^+ is given by:

$$\Lambda_{E,p} : \pi_{\leq 1}(E) \to \operatorname{Ho}(\mathbf{TOP}^{*/})$$
$$e \mapsto (F_e, e)$$
$$[\gamma : e \simeq e'] \mapsto [\gamma^+(-, 1) : (F_e, e) \to (F'_e, e')]$$

where F_e is path-connected component of $F_{p(e)}$ containing e, and γ^+ is given by:

 η is defined by $\eta_e: F_e \hookrightarrow F_{p(e)}$.

Naturality is come from $\gamma^+ \simeq (p \circ \gamma)^+|_{F_e \times I}$ rel $F_e \times \{0\}$. (notice that natural transformation $\{\eta_e\}$ are maps in Ho(**TOP**))

Use $\Lambda_{E,p}|_e : \pi_1(E,e) \to \operatorname{Aut}_{\operatorname{Ho}(\mathbf{TOP}^{*/})}(F_e)$ in lemma 5.9 and composition $[S^n, F_e]_* \times [F_e, F_e]_* \to [S^n, F_e]_*$ we obtain an $\pi_1(E, e)$ action on $[S^n, F_e]_* = \pi_n(F_e)$.

Lemma 5.10. Assume (Y, y_0) is an path-connected well-pointed space, let $r : Y \to *$ be the trivial fibration, the $\pi_1(Y, y_0)$ action on $\pi_n(Y, y_0)$ induced by $\Lambda_{Y,r}$ is equivalent to the $\pi_1(Y, y_0)$ action on $\pi_n(Y, y_0)$ in theorem 5.6

Proof.

Notice that the map \hat{f}_a is homotopically unique.

Theorem 5.11. Long exact sequence of a Hurewicz fibration $(F, e) \xrightarrow{\iota} (E, e) \xrightarrow{p} (B, b)$ ending at $\pi_1(B,b)$

$$\cdots \to [S^0, \Omega^n F]_* \xrightarrow{\Omega^n \iota_*} [S^0, \Omega^n E]_* \xrightarrow{\Omega^{n-1} p_*} [S^0, \Omega^{n-1} P_\iota]_* \xrightarrow{q_*} [S^0, \Omega^{n-1} F]_* \to \cdots$$
$$\cdots \to [S^0, \Omega F]_* \xrightarrow{\Omega \iota_*} [S^0, \Omega E]_* \xrightarrow{p_*} [S^0, P_\iota]_*$$
$$(\xrightarrow{q_*} [S^0, F]_* \xrightarrow{\iota_*} [S^0, E]_*)$$

is an exact sequence of $\pi_1(E, e)$ -groups and therefore $\pi_1(F, e)$ -groups. In more detail, the following statement holds:

- 1. For $g' \in \pi_1(F, e)$ and $x \in \pi_n(F, e)$, $g' \cdot_{\pi_1(F)} x = \iota_*(g) \cdot_{\pi_1(E)} x$.

- 1. For $g \in \pi_1(1,e)$ and $x \in \pi_n(1,e)$, $g \models_{\pi_1(F)} x = t_{*}(g) \models_{\pi_1(E)} x$. 2. For $g \in \pi_1(E,e)$ and $x \in \pi_n(B,b)$, $g \models_{\pi_1(E)} x = p_*(g) \models_{\pi_1(B)} x$. 3. For $g \in \pi_1(E,e)$ and $x \in \pi_n(F,e) = [S^0, \Omega^n F]_*$, $t_*(gx) = gt_*(x)$. 4. For $g \in \pi_1(E,e)$ and $x \in \pi_n(E,e) = [S^0, \Omega^n E]_*$, $p_*(gx) = gp_*(x)$. 5. For $g \in \pi_1(E,e)$ and $x \in \pi_n(B,b) = [S^0, \Omega^{n-1}P_t]_*$, $q_*(gx) = gq_*(x)$.

Proof.

Long Proofs Α

A.1 **Proof of Dold-Thom Theorem**

A.2**Proof of Homotopy Excision Theorem**

Proof. Follow notations in the statement of the theorem. Define (pointed) the triad homotopy group for $q \geq 2$:

$$\pi_q(X; A, B) := \pi_{q-1}(P_{i_{B,X}}, P_{i_{C,A}})$$

where $i_{B,X}: B \hookrightarrow X$, $i_{C,A}: C \hookrightarrow A$ and P_f is the homotopy fiber

$$\{(y,\gamma) \in Y \times M(I,Z)_* \mid \gamma(1) = f(y)\}$$

of pointed map $f: Y \to Z$. Use long exact sequence of pairs:

$$\cdots \to \pi_q(P_{i_{B,X}}, P_{i_{C,A}}) \to \pi_{q-1}(P_{i_{C,A}}) \to \pi_{q-1}(P_{i_{B,X}}) \to \pi_{q-1}(P_{i_{B,X}}, P_{i_{C,A}}) \to \pi_{q-2}(P_{i_{C,A}}) \to \cdots \\ \cdots \to \pi_1(P_{i_{B,X}}, P_{i_{C,A}}) \to \pi_0(P_{i_{C,A}}) \to \pi_0(P_{i_{B,X}})$$

and observe that $\pi_q(P_{i_{X,B}}) \cong \pi_{q+1}(X,B)$ since for any $f: S^q \to P_{i_{X,B}}$ we have:

use the fact $f' \in M(S^q, M(I, X)_*)_* \cong M(S^q \wedge I, X)_* \ni f''$ and $S^q \wedge I \approx D^{q+1}$ with

$$S^q \hookrightarrow S^q \land I \approx D^{q+1}$$
$$s \mapsto (s, 1)$$

the condition f'(s)(1) = g(s) is equivalent to f''((s, 1)) = g(s), that is have a map f is equivalent to have a map $f'': (D^{q+1}, S^q) \to (X, B)$. With the analogue statement also valid for homotopies $S^q \times I \to P_{i_{X,B}}$, we have $\pi_q(P_{i_{B,X}}) = [S^q, *; P_{i_{B,X}}, *] \cong [D^{q+1}, S^q; X, B] = \pi_{q+1}(X, B)$. Rewrites the long exact sequence of pairs above to:

$$\cdots \to \pi_{q+1}(X; A, B) \to \pi_q(A, C) \to \pi_q(X, B) \to \pi_q(X; A, B) \to \pi_{q-1}(A, C) \to \cdots$$
$$\cdots \to \pi_2(X; A, B) \to \pi_1(A, C) \to \pi_1(X, B)$$

Conditions $m \ge 1, n \ge 1$ guarantees $\pi_0(C) \to \pi_0(A)$ and $\pi_0(C) \to \pi_0(B)$ are surjections. $m \ge 2$ is equivalent to $\pi_1(A, C) = 0$, which implies $\pi_0(C) \to \pi_0(A)$ is bijection.

For $x \in \pi_0(A \cap_C B)$, we can always find $b \in \pi_0(B)$, $i_{B,X}(b) = x$ or $a \in \pi_0(A)$, $i_{A,X}(a) = x$ which becomes $b \in \pi_0(B)$, $i_{B,X}(b) = x$ or $c \in \pi_0(C)$, $i_{C,X}(c) = x$ when $\pi_0(C) \to \pi_0(A)$ is bijection. That is equivalent to $\pi_0(B) \to \pi_0(X)$ is bijection, which means $\pi_1(X, B) = 0$.

We only need to show that for $2 \le q \le m + n - 2$, $\pi_q(X; A, B) = 0$.

With $J^{q-1} := (\partial I^{q-1} \times I) \cup (I^{q-1} \times \{0\})$, we have:

$$\begin{aligned} \pi_q(P_{i_{B,X}}, P_{i_{C,A}}) &= [I^q, \partial I^q, J^{q-1}; P_{i_{B,X}}, P_{i_{C,A}}, *] \\ &= [I^q \wedge I; \ I^q, \ \partial I^q \wedge I, \ J^{q-1} \wedge I \to X; B, A, *] \end{aligned}$$

:= relative homotopy classes of pointed maps

$$f: I^{q} \wedge I \to X \text{ satisfying:} \begin{cases} f(I^{q}) &\subseteq B\\ f(\partial I^{q} \wedge I) &\subseteq A\\ f(\partial I^{q}) &\subseteq C\\ f(J^{q-1} \wedge I) &= * \end{cases}$$

"relative" means the homotopy h determine the classes

satisfy:
$$\begin{cases} h(I^q \times I) &\subseteq B\\ h((\partial I^q \wedge I) \times I) &\subseteq A\\ h(\partial I^q \times I) &\subseteq C\\ h((J^{q-1} \wedge I) \times I) &= * \end{cases}$$

(notice that $\partial I^q \wedge I \cap I^q = \partial I^q$, therefore $f(\partial I^q) \subseteq A \cap B = C$) (this is called (relative) homotopy class of maps of tetrads)

$$= [(I^{q} \times I)/K; I^{q} \times \{1\}, (\partial I^{q} \times I)/K, (J^{q-1} \times I)/K \to X; B, A, *]$$

(K := I^q × {0} ∪ {i_0} × I)
= [I^{q+1}; (I^{q} \times \{1\}) ∪ K, (\partial I^{q} \times I) ∪ K, J^{q-1} \times I ∪ K \to X; B, A, *]
[I^{q+1}_{q+1} = I^{q+1}_{q+1} + I^{q-1}_{q+1} + I^{q-1}_{q+1} + I^{q+1}_{q+1} + I^{q+1}_{q+1}

$$= [I^{q+1}; \ I^q \times \{1\}, \ I^{q-1} \times \{1\} \times I, \ J^{q-1} \times I \cup I^q \times \{0\} \to X; B, A, *]$$

(notice that $\partial I^q = \partial I^{q-1} \times I \cup I^{q-1} \times \{0, 1\}$)

We can assume that (A, C) have no relative q < m-cells and (B, C) have no relative q < n-cells. And we can assume that X has finite many cells since I^q is compact.

For subcomplexes $C \subseteq A' \subseteq A$, where $A = e^m \cup A'$ (attaching one cell from A'). Let $X' := A' \cup_C B$, if the results hold for (X'; A', B) and (X; A, X'), then it hold for (X; A, B) since we have map between exact homotopy sequences of triples (A, A', C) and (X, X', B):

$$\begin{array}{cccc} \pi_{q+1}(A,A') & \longrightarrow & \pi_q(A',C) & \longrightarrow & \pi_q(A,C) & \longrightarrow & \pi_q(A,A') & \longrightarrow & \pi_{q-1}(A',C) \\ \hline i_{2,q+1} & & & i_{1,q} & & & i_{3,q} & & & i_{2,q} & & & i_{1,q-1} \\ \hline \pi_{q+1}(X,X') & \longrightarrow & \pi_q(X',B) & \longrightarrow & \pi_q(X,B) & \longrightarrow & \pi_q(X,X') & \longrightarrow & \pi_{q-1}(X',B) \end{array}$$

induced by inclusion $(A, A', C) \hookrightarrow (X, X', B)$. If the result hold for (X'; A', B) and (X; A, X'), maps $i_{1,q}$, $i_{2,q}$ are isomorphisms when $1 \ge q \ge m + n - 3$, are epimorphisms when q = m + n - 2. Notice the 5-lemma says that

if $i_{1,q}$ and $i_{2,q}$ are epimorphisms, $i_{1,q-1}$ are monomorphism, then $i_{3,q}$ is epimorphism. if $i_{1,q}$ and $i_{2,q}$ are monomorphisms, $i_{2,q+1}$ are epimorphism, then $i_{3,q}$ is monomorphism.

We also have if $C \subseteq B' \subseteq B$ with $B = B' \cup e^n$, the result hold for CW-triads (X'; A, B') and (X; X', B) where $X' = A \cup_C B'$, since $(A, C) \hookrightarrow (X, B)$ factors as $(A, C) \hookrightarrow (X', B') \hookrightarrow (X, B)$.

Now we can assume that $A = C \cup D^m$ and $B = C \cup D^n$.

The current goal of proof is to prove any

$$f: (I^{q+1}; \ I^q \times \{1\}, \ I^{q-1} \times \{1\} \times I, \ J^{q-1} \times I \cup I^q \times \{0\}) \to (X; B, A, *)$$

is nullhomotopic for any q+1 with $2 \le q+1 \le m+n-2$.

For $a \in D^{m}$, $b \in D^{n}$ We have inclusions of based triads:

$$(A; A, A - \{a\}) \hookrightarrow (X - \{b\}; X - \{b\}, X - \{a, b\}) \hookrightarrow (X; X - \{b\}, X - \{a\}) \longleftrightarrow (X; A, B)$$

The first and the third induces isomorphisms on homotopy groups of triads since B is a strong deformation retract of $X - \{a\}$ in X and A is a strong deformation retract of $X - \{b\}$ in X. $\pi_*(A; A, A - \{a\}) = 0$ since $\pi_*(A, A - \{a\}) \rightarrow \pi_*(A, A \cap (A - \{a\}))$ are isomorphisms.

Current goal : choose good a, b to show f regarded as a pointed traid map to $(X; X - \{b\}, X - \{a\})$ is homotopic to a map

$$f': (I^{q+1}; I^{q-1} \times \{1\} \times I, I^q \times \{1\}, J^{q-1} \times I \cup I^q \times \{0\}) \to (X - \{b\}; X - \{b\}, X - \{a, b\}, *)$$
 if $2 \le q+1 \le m+n-2$.

Note. We want to homotopically remove some point $f^{-1}(b)$, first we may want to construct some Uryssohn function u separating $f^{-1}(a) \cup J^{q-1} \times I \cup I^q \times \{0\}$ and $f^{-1}(b)$ and construct homotopy of cube $h^+: (r, s, t) \mapsto (r, (1 - u(r, s)t)s)$ wishing that $f(h^+(r, s, 1))$ would miss b. The problem in this method is that points $f^{-1}(b)$ in the cube would be homotopically replaced by other points. Since our desire homotopy does not change the first q coordinates of the cube, we want to separate $p^{-1}(p(f^{-1}(a))) \cup J^{q-1} \times I$ and $p^{-1}(p(f^{-1}(b)))$ (where $p: I^q \times I \to I^q$). Our problem is to find suitable a, b such that $p(f^{-1}(a)) \cap p(f^{-1}(b)) = \emptyset$.

We use manifold structure on D^m and D^n to achieve it, now we homotopically approximate f by a map g which smooth on $f^{-1}(D^m_{<1/2} \cup D^n_{<1/2})$.

Let $U_{\leq r} := f^{-1}(D_{\leq r}^m \cup D_{\leq r}^n)$, Use smooth deformation theorem to construct smooth map (for any $0 < \epsilon$) $g' : U_{\leq 3/4} \to D_{\leq 3/4}^m \cup D_{\leq 3/4}^n$ with homotopy $h_1 : g' \simeq f|_{U_{\leq 3/4}}$ (and bound $|g'(x) - f(x)| < \epsilon$ for any $x \in U_{\leq 1}$) and take partition of unity $\{\rho, \rho'\}$ with subcoordinates $\{I^{q+1} - \overline{U_{\leq 1/2}}, U_{\leq 3/4}\}$, we have:

$$g := \rho f + \rho' g'$$

$$h_2 : g \simeq f \operatorname{rel} (I^{q+1} - U_{<3/4})$$

$$h_2 : I^{q+1} \times I \to X$$

$$(x, t) \mapsto \rho(x) f(x) + \rho'(x) h_1(x, t)$$

with scalar multiplication and addition is already defined on smooth structure on $D^m_{<3/4} \cup D^n_{<3/4}$. We could assmue that $g(I^{q-1} \times \{1\} \times I) \cap D^n_{<1/2} = \emptyset$ (which implies g is a map of tetrads to $(X; X - \{b\}, X - \{a\}, *)$) and $g(I^q \times \{1\}) \cap D^m_{<1/2} = \emptyset$ since $f(I^{q-1} \times \{1\} \times I) \subseteq A$ and $f(I^q \times \{1\}) \subseteq B$ and we can always tighten the bound ϵ , (Similar argument also hold for h_2 , then we have $h_2 : g \simeq f$ as homotopy between maps of tetrads.)

Use the manifold structure to find good (a, b): $V := g^{-1}(D^m_{<1/2}) \times g^{-1}(D^n_{<1/2})$ is a sub-manifold of $I^{2(q+1)}$. Consider $W := \{(v, v') \in V \mid p(v) = p(v')\}$, which is the zero set of smooth submersion $(v, v') \mapsto p(v) - p(v')$. W is smooth manifold with codimension q. Therefore the map $(g, g) : W \to D^m_{<1/2} \times D^n_{<1/2}$ is smooth map between manifolds of dimension q + 2 and m + n. The map is not surjection since q + 2 < m + n. Then we have $(a, b) \notin (g, g)(W)$ (that is, $p(g^{-1}(a)) \cap p(g^{-1}(b))$).

Since $g(I^{q-1} \times \{1\} \times I) \cap D^n_{<1/2} = \emptyset$ and $g(J^{q-1} \times I) \cap D^n_{<1/2} = \emptyset$, we have $g(\partial I^q \times I) \cap D^n_{<1/2} = \emptyset$. By Uryssohn's lemma, we have $u : I^q \to I$ separating $p(g^{-1}(a)) \cup \partial I^q$ and $p(g^{-1}(b))$. Finally we have:

$$h': I^q \times I \times I \to I^q \times I$$
$$(r, s, t) \mapsto (r, (1 - u(r)t)s$$

and $h := g \circ h', f' := h(-,1)$. $f'(I^{q+1}) \cap \{b\} = \emptyset$ since if $\exists (r,s) \in I^q \times I, f'(r,s) = b$, then b = g(r, (1-u(r))s) = g(r,0) = * leads to contradiction.

Last step is to check that h is a homotopy between maps

$$(I^{q+1}; I^{q-1} \times \{1\} \times I, I^q \times \{1\}, J^{q-1} \times I \cup I^q \times \{0\}) \to (X; X - \{b\}, X - \{a\}, *)$$

Since g is, $g \circ h'$ is too.