Spectral Sequences

Cloudifold

May 4, 2025

Towards to Constructions 0

0.1Homology of length-2-filtration of chain complexes

Suppose we have a chain complex of finite dimensional vector spaces

$$C_* = \{ \dots \to C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \to \dots \}_{n \in \mathbb{Z}}$$

If it is graded

$$C_* \cong \bigoplus_{k=1}^m C_{*,k}$$

we can split differential $d_n \cong \bigoplus_{k=1}^m d_{n,k}$ then we can break up homology of C_* into smaller pieces:

 $H_n(C_*) \cong \bigoplus_{k=1}^m H_n(C_{*,k}).$ Now suppose we have a filtration of C_* as complexes: $0 = F_0C_* \hookrightarrow F_1C_* \hookrightarrow F_2C_* = C_*$ which means $\forall n \in \mathbb{Z}, \ d_n(F_qC_n) \subseteq F_qC_{n-1}.$

For each n we can decomposite C_n into direct sum

$$C_n \cong \frac{C_n}{F_1 C_n} \oplus F_1 C_n = G_2 C_n \oplus G_1 C_n$$

where G_pC_n is the associated graded object $G_pC_* := \frac{F_pC_*}{F_{p-1}C_*}$.

Since $d_n(F_1C_n) \subseteq F_1C_{n-1}$, d_n on the component $\frac{C_n}{F_1C_n}$ is well-defined. Furthermore, d_n induces a

map $d_n^0: G_2C_n \oplus G_1C_n \to G_2C_{n-1} \oplus G_1C_{n-1}$ Real difficulty of decompositing **chain complex** C_* into chain complexes $G_2C_* \oplus G_1C_*$ is that for $c \in d_n^{-1}(F_1C_{n-1}) \subseteq C_n, d_n(c) \neq d_{n,2}^0 \oplus d_{n,1}^0(c)$:

$$C_n = \frac{C_n}{F_1 C_n} \oplus F_1 C_n \xrightarrow{d_n} \frac{C_{n-1}}{F_1 C_{n-1}} \oplus F_1 C_{n-1}$$
$$c = (a, b) \longmapsto (0, d_n(a, b)) \neq (0, d_{n,1}^0(b))$$

This difficulty would make Im d_n larger than Im $(d_{n,2}^0 \oplus d_{n,1}^0)$ and ker d_n smaller than ker $(d_{n,2}^0 \oplus d_{n,1}^0)$. Intuitively, we plot d as:

$$\cdots \longrightarrow \frac{C_{n+1}}{F_1 C_{n+1}} \xrightarrow{d_{n+1,2}^0} \frac{C_n}{F_1 C_n} \xrightarrow{d_{n,2}^0} \frac{C_{n-1}}{F_1 C_{n-1}} \longrightarrow \cdots$$

$$\bigoplus \stackrel{i_{n+1}(F_1 C_n)}{\longrightarrow} \bigoplus \stackrel{i_{d_n^{-1}(F_1 C_{n-1})}}{\longrightarrow} \bigoplus \stackrel{i_{d_n^{-1}(F_1 C_{n-1})}}{\longrightarrow} \bigoplus F_1 C_{n+1}} \xrightarrow{i_{d_{n+1,1}}} F_1 C_n \xrightarrow{d_{n,1}^0} F_1 C_{n-1} \longrightarrow \cdots$$

Where the diagonal "maps" (call them D_n^1) are defined only on ker $d_{*,2}^0 = \frac{d_*^{-1}(F_1C_{*-1})}{F_1C_*}$. The real homology of $C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1}$ is

$$\frac{\ker(d_{n,2}^0\oplus d_{n,1}^0)\cap \ker(D_n^1)}{\operatorname{Im}(d_{n+1,2}^0\oplus d_{n+1,1}^0) + \operatorname{Im}(D_{n+1}^1)} = \frac{\ker d_{n,2}^0\cap \ker D_n^1}{\operatorname{Im} d_{n+1,2}^0} \oplus \frac{\ker d_{n,1}^0}{\operatorname{Im} d_{n+1,1}^0 + \operatorname{Im} D_{n+1}^1}$$

Naturally, we want it be some homology of

$$\frac{\ker(d_{n,2}^0 \oplus d_{n,1}^0)}{\operatorname{Im}(d_{n+1,2}^0 \oplus d_{n+1,1}^0)} = \frac{\ker d_{n,2}^0}{\operatorname{Im} d_{n+1,2}^0} \oplus \frac{\ker d_{n,1}^0}{\operatorname{Im} d_{n+1,1}^0}$$

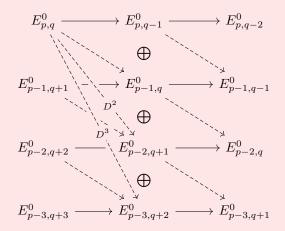
Since $D_n^1 \circ d_{n+1,2}^0 = 0$ and $d_{n,1}^0 \circ D_n^1$, the diagonal arrows D_n^1 define **real** maps $d_n^1 : \frac{\ker d_{n,2}^0}{\operatorname{Im} d_{n+1,2}^0} \to 0$ $\frac{\ker d_{n+1,1}^0}{\operatorname{Im} d_{n-1}^0}.$ Now we get $H_n(C_*) = \ker d_n^1 \oplus \operatorname{coker} d_{n+1}^1.$

0.2Homology of length-n-filtration of chain complexes

Suppose we have a **filtration** of length n of C_* :

$$0 = F_0 C_* \hookrightarrow F_1 C_* \hookrightarrow \cdots \hookrightarrow F_{n-1} C_* \hookrightarrow F_n C_* = C_*$$

We define $E_{p,q}^0 := G_p C_{p+q} = \frac{F_p C_{p+q}}{F_{p-1} C_{p+q}}$ and $d_{p,q}^0 : E_{p,q}^0 \to E_{p,q-1}^0$ is the map induced by d_{p+q} : $C_{p+q} \to C_{p+q-1}$. In this case, d is more complicated:

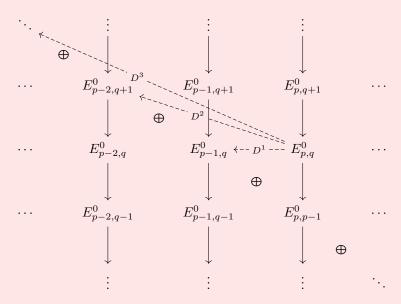


The "map" $D^2: \frac{F_p C_{p+q}}{F_{p-1}C_{p+q}} \to \frac{F_{p-2}C_{p-1+q}}{F_{p-3}C_{p-1+q}}$ comes from restricting $d|_{F_p C_{p+q}}$ on ker $D^1 = d^{-1}(F_{p-2}C_{p-1+q}) \cap d^{-1}(F_{p-1}C_{p-1})$ $F_p C_{p+q}$.

Inductively, we obtain "map" $D^r: \frac{F_p C_{p+q}}{F_{p-1}C_{p+q}} \rightarrow \frac{F_{p-r}C_{p-1+q}}{F_{p-r-1}C_{p-1+q}}$ defined by restricting d on $\ker D^{r-1} = d^{-1}(F_{p-r}C_{p-1+q}) \cap F_p C_{p+q}$. Intuitively, we want:

• ker $d \cap E_{p,q}^0 = \ker d^0 \cap (\bigcap_r \ker D^r)$ • Im $d \cap E_{p,q}^0 = \operatorname{Im} d^0 + (\sum_r \operatorname{Im} D^r)$ If we have identities above, we could compute $H_n(C) = \frac{\ker d \cap \bigoplus_{p+q=n} E_{p,q}^0}{\operatorname{Im} d \cap \bigoplus_{p+q=n} E_{p,q}^0} = \bigoplus_{p+q=n} \frac{\ker d^0 \cap (\bigcap_r \ker D^r)}{\operatorname{Im} d^0 + (\sum_r \operatorname{Im} D^r)}$.

We plot these "maps" under our indexing convention:



Inspired by the length 2 case, we take iterated homology to to convert D^r into well-defined maps. Define *r*-almost cycles $Z_{p,q}^r$ and *r*-almost boundaries $B_{p,q}^r$ by:

$$\begin{split} Z_{p,q}^{r} := & \frac{\{c \in F_{p}C_{p+q} \mid d(c) \in F_{p-r}C_{p+q-1}\}}{F_{p-1}C_{p+q}} \\ &= & \frac{d^{-1}(F_{p-r}C_{p+q-1}) \cap F_{p}C_{p+q}}{F_{p-1}C_{p+q}} \\ &= & \text{intuitively ker } D^{r-1} \\ B_{p,q}^{r} := & \frac{d(F_{p+r-1}C_{p+q+1}) \cap F_{p}C_{p+q}}{F_{p-1}C_{p+q}} \\ &= & \text{intuitively Im } D^{r-1} \end{split}$$

On $E_{p,q}^r := \frac{Z_{p,q}^r}{B_{p,q}^r}$, D^r becomes a well-defined map

$$\begin{aligned} d_{p,q}^{r} : E_{p,q}^{r} &\longrightarrow E_{p-r,q+r-1}^{r} \\ \frac{d^{-1}(F_{p-r}C_{p+q-1}) \cap F_{p}C_{p+q}}{d(F_{p+r-1}C_{p+q+1}) \cap F_{p}C_{p+q} + F_{p-1}C_{p+q}} \xrightarrow{d|} \frac{d^{-1}(F_{p-2r}C_{p+q-2}) \cap F_{p-r}C_{p+q-1}}{d(F_{p-1}C_{p+q}) \cap F_{p-r}C_{p+q-1} + F_{p-r-1}C_{p+q-1}} \end{aligned}$$

And is still differential. Our intuition $Z^r = \ker D^{r-1}$ and $B^r = \operatorname{Im} D^{r-1}$ are now strict identities:

$$Z_{p,q}^{r+1} = \frac{d^{-1}(F_{p-(r+1)}C_{p+q-1}) \cap F_pC_{p+q}}{F_{p-1}C_{p+q}} = \ker d_{p,q}^r + B_{p,q}^r$$
$$B_{p,q}^{r+1} = \frac{d(F_{p+(r+1)-1}C_{p+q+1}) \cap F_pC_{p+q}}{F_{p-1}C_{p+q}} = \operatorname{Im} d_{p+r,q-r+1}^r + B_{p,q}^r$$

And $H_n(C) = \bigoplus_{p+q=n} \frac{\bigcap_r Z^r}{\sum_r B^r}$

1 Spectral Sequence and Convergence

1.1 Spectral Sequences and length-infty-filtration

Definition 1.1. A Spectral Sequence (start at r_0 -page $(r_0 \in \mathbb{N})$) is a series of complexes (in some Abelian category) $\{E_r\}_{r=r_0}^{\infty}$ with given differentials $\{d_r : E_r \to E_r\}_{r=r_0}^{\infty}$ such that $E_{r+1} \cong H(E_r, d_r)$.

Note. Usually, a spectral sequence is bi-graded under following conventions:

• Cohomological convention

$$E_r = \bigoplus_{n \in \mathbb{Z}} \left(\bigoplus_{p+q=n} E_r^{p,q} \right)$$

and d_r with bi-degree (r, -r+1):

	L_2	L_3	E_4
3 2 1 0	0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0 1 2 3 4	0 1 2 3 4	0 1 2 3 4

• Homological convention

$$E^r = \bigoplus_{n \in \mathbb{Z}} \left(\bigoplus_{p+q=n} E^r_{p,q} \right)$$

As we see, filtration of finite length on C could induce a spectral sequence $\{E^r, d^r\}_{r \in \mathbb{N}}$ which computes H(C) for sufficient large r: $\operatorname{Tot}^{\oplus}(E^r) \cong H(C)$. But in practice, most of our filtrations have infinite length. When lengths are infinite, we need more constriants to insure that we could compute correct homologies from spectral sequences.

Definition 1.2. A descending filtration of X is a sequence of monomorphisms: $\{\dots \mapsto F^n X \mapsto F^{n-1} X \mapsto \dots \mapsto X\}_{n \in \mathbb{Z}}.$

Definition 1.3. A decreasing filtration $\{F^nX\}_{n\in\mathbb{Z}}$ of X (in some Abelian category) is called • exhaustive if $\lim_{n \to \infty} X_n \cong X$.

- Hausdorff if $\varprojlim_n^n X_n \cong 0$.
- complete if $\lim_{n \to \infty} X_n \cong 0$.

Note. If $\{F^nX\}_{n\in\mathbb{Z}}$ is in \mathbb{Z} - Mod, then we can topologize X by $\tau_X := \{x + F^nX \mid x \in X, n \in \mathbb{Z}\} \cup \{\emptyset, X\}.$

Then (X, τ_X) is Hausdorff topological space iff $\lim_{n \to \infty} X_n \cong 0$.

Recall that a Cauchy sequence in a topological group X is a sequence $x_{-} : \mathbb{N} \to X$ satisfy: For any open neighborhood U of 0, there exists $N_U \in \mathbb{N}$ such that $\forall r, s \geq N_U$. $x_r^{-1} x_s \in U$. $x \in X$ is a limit of a Cauchy sequence x_{-} if:

For any open neighborhood U of x, there exists $N_U \in \mathbb{N}$ such that $\forall r \geq N_U$. $x_r - x \in U$. Take a Cauchy Sequence x_{-} , image of x_n in $\frac{X}{F^s X}$ is stable $(\operatorname{Im} x_r = \operatorname{Im} x_n, r \ge n)$ for large enough n. By taking the stable image of x_- in $\frac{X}{F^s X}$, we defines a element $y^s \in \frac{X}{F^s X}$ and it passes to limit:

Apply lim, we obtain a exact sequence:

$$0 \longrightarrow \varprojlim_{s} F^{s}X \longrightarrow X \longrightarrow \varprojlim_{s} \frac{X}{F^{s}X} \longrightarrow \varprojlim_{s}^{1} F^{s}X \longrightarrow 0$$

A limit of x_{-} exists iff these y^{s} could be lifted to X.

X is complete (all Cauchy sequence have limit) iff $\lim_{s \to 0} F^s X = 0$.

Definition 1.4. Let $\{E_{p,q}^r, d^r\}_{r=r_0}^{\infty}$ be a spectral sequence.

If for all $p,q \in \mathbb{Z}$ there exists $r(p,q) \in \mathbb{N}$ such that $r \ge r(p,q) \implies E_{p,q}^r \cong E_{p,q}^{r(p,q)}$, then we say

$$\begin{split} E_{p,q}^{\infty} &:= E_{p,q}^{r(p,q)} \text{ is the limit term of } \{E_{p,q}^{r}, d^{r}\}_{r=r_{0}}^{\infty}, \text{ and } \{E_{p,q}^{r}, d^{r}\}_{r=r_{0}}^{\infty} \text{ abuts to } E^{\infty}. \\ \text{ If there exists } N \text{ such that } r \geq N \implies \forall p, q \text{ . } d_{p,q}^{r} = 0, \text{ then we say } E^{r} \text{ collapses at } N\text{-th} \end{split}$$
page.